首页> 外文学位 >An alternative structure for next generation regulatory controllers and scale-up of copper(indium gallium)selenide thin film co-evaporative physical vapor deposition process.
【24h】

An alternative structure for next generation regulatory controllers and scale-up of copper(indium gallium)selenide thin film co-evaporative physical vapor deposition process.

机译:下一代调节控制器的替代结构,以及硒化铜(铟镓)薄膜共蒸发物理气相沉积工艺的规模化。

获取原文
获取原文并翻译 | 示例

摘要

Process control systems have three key performance attributes: Set-point tracking (T)---ability to cause the process output to follow set-point changes rapidly and faithfully; Disturbance rejection (D)---ability to counteract the effects of external disturbances; and Robustness ( R)---ability to remain stable and perform well in the face of inevitable plant/model mismatch. A controller whose tuning constants are related directly to these performance attributes will have definite advantages over other controllers. However, the popular PID controller, even though simple, has an intrinsic structure that results in a complicated, hence non-transparent, relationship between its tuning parameters and the three controller performance attributes, limiting the controller's achievable performance and making tuning arguably more complex than necessary. In order to overcome the weaknesses of the PID controller, we have developed an alternative regulatory controller (the RTDA 1 controller) having the following salient features: it requires precisely the same information that is required for tuning PID controllers; its tuning parameters are directly related to the three key controller attributes of R, T, and D (an auxiliary fourth parameter, influences the overall controller aggressiveness (A)); all four tuning parameters are normalized to lie between 0 and 1; and the magnitude of a tuning parameter is related to performance aggressiveness, where the higher magnitudes signify conservative performance in the attribute of interest. In addition, the proposed predictive controller is not any more complicated to implement, in either software or hardware, than the PID controller.; In order to study how the choices of various RTDA controller parameter values jointly and individually affect closed-loop stability, a theoretical robust stability analysis is performed. The results of this analysis are subsequently used to develop systematic strategies for choosing the RTDA controller parameters that provide the best possible trade-off between robust stability and performance. The design and implementation of the RTDA controller in practice are illustrated experimentally using two processes: a lab-scale four-tank process with time delay and a pilot-scale physical vapor deposition process with nonlinear dynamics. These experiments demonstrate the RTDA controller's improved performance over PID controllers. The RTDA control scheme is also extended to integrating and open-loop unstable processes.; A pilot-scale co-evaporative physical vapor deposition (PVD) process for manufacture of copper indium gallium diselenide (Cu(InGa)Se2) thin films is chosen to validate the proposed RTDA controller experimentally, since robust control of film thickness and composition set-points for long deposition times cannot be achieved without effective base regulatory control. However, unlike film thickness and composition set-points that can be achieved with proper process control, achieving film thickness uniformity across large area substrates is a process design issue. To achieve good process performance, the process design issues are addressed first, and then the regulatory controller design is improved.; The work presented in Part II of this thesis is focused mainly on the evaporation source design. Such a study requires not only the detailed knowledge of the evaporation source temperature profile, but also accurate estimation of nozzle flow properties (effusion rates and vapor flux distribution). A three-dimensional first-principles electro-thermal model of the source is developed using the COM-SOL Multiphysics'(TM) finite-element method, and the Direct Simulation Monte Carlo (DSMC) technique is employed to predict accurately the nozzle flow properties for any given nozzle geometry and evaporant. These models are validated experimentally, and subsequently used to design evaporation sources that not only achieve the targeted film thickness uniformity, but also max
机译:过程控制系统具有三个关键的性能属性:设定点跟踪(T)---使过程输出快速,忠实地跟随设定点变化的能力;干扰抑制(D)-抵抗外部干扰影响的能力;鲁棒性(R)---在不可避免的工厂/模型不匹配的情况下保持稳定并表现良好的能力。调整常数与这些性能属性直接相关的控制器将具有比其他控制器明显的优势。然而,流行的PID控制器尽管简单,但其固有结构导致其调节参数与三个控制器性能属性之间的关系复杂,因此是不透明的,从而限制了控制器可实现的性能,并且使调节比之复杂。必要。为了克服PID控制器的弱点,我们开发了一种替代的调节控制器(RTDA 1控制器),该控制器具有以下显着特征:它需要与调节PID控制器所需的信息完全相同;其调整参数与R,T和D的三个关键控制器属性直接相关(辅助的第四个参数会影响总体控制器的主动性(A));所有四个调整参数均归一化为介于0和1之间;调整参数的大小与性能侵略性相关,其中较高的值表示目标属性的保守性能。另外,所提出的预测控制器在软件或硬件上实现都不比PID控制器更复杂。为了研究各种RTDA控制器参数值的选择如何共同和分别影响闭环稳定性,进行了理论上的鲁棒稳定性分析。此分析的结果随后用于开发系统策略,以选择RTDA控制器参数,从而在鲁棒稳定性和性能之间提供最佳平衡。实际中使用两个过程对RTDA控制器的设计和实现进行了实验说明,其中包括两个过程:具有时延的实验室规模的四罐过程和具有非线性动力学的中试规模的物理气相沉积过程。这些实验证明了RTDA控制器的性能优于PID控制器。 RTDA控制方案还扩展到集成和开环不稳定过程。选择中试规模的共蒸发物理气相沉积(PVD)工艺制造铜铟镓二硒(Cu(InGa)Se2)薄膜,以通过实验验证建议的RTDA控制器,因为对膜厚和成分的稳健控制具有以下优点:如果没有有效的基础法规控制,就无法获得长沉积时间的积分。但是,与通过适当的过程控制可以达到的膜厚和组成设定点不同,在大面积基板上实现膜厚均匀性是一个过程设计问题。为了获得良好的过程性能,首先要解决过程设计问题,然后改进监管控制器的设计。本文第二部分介绍的工作主要集中在蒸发源设计上。这样的研究不仅需要对蒸发源温度曲线的详细了解,而且还需要对喷嘴流动特性(喷射速率和蒸汽通量分布)进行准确的估算。使用COM-SOL Multiphysics'(TM)有限元方法开发了源的三维第一性原理电热模型,并采用直接模拟蒙特卡洛(DSMC)技术准确预测了喷嘴的流动特性对于任何给定的喷嘴几何形状和蒸发剂。这些模型已通过实验验证,随后用于设计蒸发源,这些蒸发源不仅可实现目标膜厚均匀性,而且还可实现最大

著录项

  • 作者

    Mukati, Kapil.;

  • 作者单位

    University of Delaware.$bDepartment of Chemical Engineering.;

  • 授予单位 University of Delaware.$bDepartment of Chemical Engineering.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 311 p.
  • 总页数 311
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化工过程(物理过程及物理化学过程);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号