首页> 外文学位 >The treatment of missing data in process monitoring and identification.
【24h】

The treatment of missing data in process monitoring and identification.

机译:在过程监视和识别中对丢失数据的处理。

获取原文
获取原文并翻译 | 示例

摘要

Process data suffers from many different types of imperfections, for example, bad data due to sensor problems, multi-rate data, outliers, data compression etc. Since most modeling and data analysis methods are developed to analyze regularly sampled and well conditioned data sets there is a need for pre-treatment of data. Traditionally these imperfections have been viewed as unrelated problems and dealt individually. In this thesis we treat these diverse problems under the general framework of 'treatment of missing data'. A vast amount of literature on the statistical analysis of data with missing values has flourished over last three decades mainly dealing with statistical surveys and biomedical data analysis. Therefore, the objectives of this study are to: (i) establish the link between the missing data literature and the process data analysis, so that the process engineering community can take advantage of these methods, (ii) extend some of the commonly used process data analysis tools using these formal methods for building models from data matrix with missing values and (iii) implement novel applications of missing data handling techniques in solving problems which may not appear as missing data problem directly.; This thesis has two main parts. Part-I of this thesis deals with 'off-line' modeling of 'latent variable models'. Principal Component Analysis (PCA), Iterative-PCA (IPCA) and Maximum Likelihood Factor Analysis (MLFA) are extended to the Data Augmentation framework for dealing with missing values. Missing data handling techniques have been applied to synchronize uneven length batch process data and recover the correlation between compressed signals. Data pre-processing issues other than missing values have been dealt with in relation to an industrial case study where PCA was used to detect sheet-breaks in a paper mill.; Part-II of the thesis deals with the 'on-line' filtering problem. The Sequential Monte Carlo (SMC) filter is extended to a Multiple Imputation framework for updating the filter with multi-rate measurements.; The improved performance of the proposed methods have been demonstrated using simulated examples, experimental data and industrial case study.
机译:过程数据存在许多不同类型的缺陷,例如,由于传感器问题而导致的不良数据,多速率数据,离群值,数据压缩等。由于大多数建模和数据分析方法都是为了分析定期采样和条件良好的数据集而开发的需要对数据进行预处理。传统上,这些缺陷被视为不相关的问题,需要单独处理。在本文中,我们在“丢失数据的处理”的一般框架下处理这些各种各样的问题。在过去的三十年中,大量的关于缺失值数据的统计分析的文献蓬勃发展,主要涉及统计调查和生物医学数据分析。因此,本研究的目标是:(i)在缺失的数据文献与过程数据分析之间建立联系,以便过程工程界可以利用这些方法,(ii)扩展一些常用过程数据分析工具使用这些形式化方法从具有缺失值的数据矩阵中构建模型,并且(iii)在解决可能不会直接表现为缺失数据问题的问题时,采用缺失数据处理技术的新颖应用。本文主要分为两个部分。本文的第一部分涉及“潜在变量模型”的“离线”建模。主成分分析(PCA),迭代PCA(IPCA)和最大似然因子分析(MLFA)已扩展到数据增强框架,以处理缺失值。丢失的数据处理技术已应用于同步长度不均匀的批处理数据并恢复压缩信号之间的相关性。与一个工业案例研究有关的是处理缺失值以外的数据预处理问题,在该案例中,PCA被用于检测造纸厂的纸张断裂。本文的第二部分讨论了“在线”过滤问题。顺序蒙特卡洛(SMC)滤波器已扩展到多重插补框架,以通过多速率测量更新滤波器。通过仿真实例,实验数据和工业案例研究证明了所提出方法的改进性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号