首页> 外文学位 >High yield anthocyanin biosynthesis in metabolic engineering Escherichia coli.
【24h】

High yield anthocyanin biosynthesis in metabolic engineering Escherichia coli.

机译:代谢工程大肠杆菌中的高产量花色苷生物合成。

获取原文
获取原文并翻译 | 示例

摘要

Anthcoyanins, the largest sub-group of flavonoids and a major group of plant pigments, impart the eye-catching hues to most flowers and fruits ranging from pink through red and purple to dark blue. They are widely distributed in the human diet through crops, beans, fruits, vegetables and red wine and have been found to be present in significant amounts in plant-based daily diets. Anthocyanins have been given much attention because of their health promoting properties including anti-oxidative, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, and cardioprotective. Due to their commercial value, high-yield anthocyanin biosynthesis has become a subject of great interest for metabolic engineering purposes, both in plants and microorganisms. In the first part of our work, we present therole of anthocyanin stability at various conditions as well as the cofactor contribution, the stability of the final product and intermediate-anthocyanidin, and cofactor UDP-glucose availability in anthocyanin production in Escherichia coli. Various optimization and metabolic engineering strategies including a new fermentation approach established in order to address the product stability issue, the creation of translational fusions in order to address the issue of the intermediate anthocyanidin instability, and rationally modifying the genotype and manipulating metabolic circuit in order to enhance the availability of cofactor UDP-glucose are presented.; UDP-glucose is one of the most significant glucosyl donors in a variety of enzymatic reactions including the biosynthesis of simple or complex glucosides, oligosaccharides and polysaccharides, glycoproteins and related macromolecules. It is the starting point of the synthesis of other UDP-sugars, such as UDP-galactose and UDP-glucuronic acid. Although E. coli is capable of synthesizing UDP-glucose, a high regeneration rate of UDP-glucose does not normally occur in wide-type cells without significant metabolic engineering efforts. So, the genotype and metabolic network of host E. coli BL21* were rationally designed for the abundant accumulation of UDP-glucose, a key precursor in anthocyanin biosynthesis. Two methods for improvement of the carbon flux towards the UDP-glucose including overexpression of UDP-glucose synthesis by augmenting both pentose phosphate and nucleotide biosynthesis, and deletion of UDP-glucose competition pathway through gene knockout were adopted. Meanwhile, knockout mutants suggested by a silico model of genome-scale E. coli metabolic network were generated to further improve the intracellular UDP-glucose availability for efficient anthocyanin biosynthesis.; With these efforts, we report here that the production of cyanidin 3- O-glucoside was increased to 113 mg/L from its precursor flavan-3-ol (+)-catechin without supplementing UDP-glucose in the fermentation medium. These results demonstrate the efficient production of the core anthocyanins for the first time from a microorganism and built the platform for their commercialization for pharmaceutical and nutraceutical applications. Meanwhile, the metabolic engineering UDP-glucose biosynthesis strategies will have an extended impact in the biosynthesis of various glycosylated natural products such as antibiotics.
机译:花青素是类黄酮的最大子类,是植物色素的主要组成部分,可为大多数鲜花和水果(从粉红色到红色和紫色到深蓝色)赋予醒目的色调。它们在人类饮食中广泛分布于农作物,豆类,水果,蔬菜和红酒中,并且发现以植物为基础的日常饮食中大量存在。花青素由于具有促进健康的特性,包括抗氧化,抗炎,抗癌,抗肥胖,抗糖尿病和心脏保护作用而备受关注。由于其商业价值,高产的花色苷生物合成已成为植物和微生物中代谢工程目的的重要课题。在我们工作的第一部分中,我们介绍了花色苷在各种条件下的稳定性以及辅因子的贡献,最终产品和中间体花色素苷的稳定性以及大肠杆菌花色苷生产中辅因子UDP-葡萄糖的利用率。各种优化和代谢工程策略包括:建立新的发酵方法以解决产品稳定性问题;创建翻译融合以解决中间花青素不稳定性问题;合理地修改基因型和操纵代谢循环,以解决提出了提高辅因子UDP-葡萄糖的可用性。 UDP-葡萄糖是多种酶促反应中最重要的葡萄糖基供体之一,包括简单或复杂苷,寡糖和多糖,糖蛋白和相关大分子的生物合成。它是合成其他UDP糖(例如UDP-半乳糖和UDP-葡萄糖醛酸)的起点。尽管大肠杆菌能够合成UDP-葡萄糖,但是在没有大量的代谢工程努力的情况下,宽型细胞通常不会出现UDP-葡萄糖的高再生速率。因此,合理设计了宿主大肠杆菌BL21 *的基因型和代谢网络,以使花青素生物合成的关键前体UDP-葡萄糖大量积累。采用了两种方法来提高向UDP葡萄糖的碳通量,包括通过增加戊糖磷酸和核苷酸生物合成来过度表达UDP葡萄糖,以及通过基因敲除来删除UDP葡萄糖竞争途径。同时,产生了由基因组规模的大肠杆菌代谢网络的计算机模型建议的敲除突变体,以进一步提高细胞内UDP-葡萄糖的利用率,以进行有效的花色苷生物合成。通过这些努力,我们在这里报告,在不添加发酵培养基中UDP-葡萄糖的情况下,花青素3-O-葡萄糖苷的产量从其前体flavan-3-ol(+)-儿茶素增加到113 mg / L。这些结果证明了首次从微生物中有效生产核心花色苷,并为将其商业化用于药物和营养保健品应用奠定了平台。同时,代谢工程UDP-葡萄糖的生物合成策略将对各种糖基化天然产物(如抗生素)的生物合成产生广泛的影响。

著录项

  • 作者

    Li, Zhen.;

  • 作者单位

    State University of New York at Buffalo.$bChemical and Biological Engineering.;

  • 授予单位 State University of New York at Buffalo.$bChemical and Biological Engineering.;
  • 学科 Biology Molecular.; Biology Microbiology.; Engineering Chemical.
  • 学位 M.S.
  • 年度 2008
  • 页码 73 p.
  • 总页数 73
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号