首页> 外文学位 >Charging regions, regions of charge, and storm structure in a partially inverted polarity supercell thunderstorm.
【24h】

Charging regions, regions of charge, and storm structure in a partially inverted polarity supercell thunderstorm.

机译:部分反转极性的超级单体雷暴中的充电区域,电荷区域和风暴结构。

获取原文
获取原文并翻译 | 示例

摘要

Dipoles, tripoles and other stacked charge arrangements are a temptingly convenient explanation of the electrical structure of entire storms and may have merit when storms can be considered a point phenomenon. However, the internal charge structure of storms with three-dimensional kinematic and microphysical structure (e.g., supercells) is not well-represented by single stack of pancake-shaped charge regions.In this study, lightning mapping and radar data from the 26 May 2004 supercell in central Oklahoma are used to examine successive arcs of lightning that developed in response to pulses in the storm's updraft. The evolution of lightning in updraft pulses was found to match with the established model of the formation and fallout of precipitation in supercells.Initial lightning in an arc was contained within precipitation lofted above the storm's weak echo region. Lower positive charge was centered at 7 km, negative charge at 10 km, and positive charge at 12 km, which is considered an elevated normal polarity tripole formed by the non-inductive charging collisions between ice crystals and riming graupel. Later and simultaneously, two different charge regions were associated with precipitation that reached the ground. To the left of the weak echo region, six charge regions were inferred to form a normal polarity arrangement, with positive charge carried on hail at the bottom of the stack. Further forward in the storm's precipitation region, four charge regions were inferred, with negative charge at the bottom of the stack, which is an inverted polarity structure. Flashes occasionally lowered positive charge to ground from this charge region. The charge structures in the precipitating region of the storm were due to charge advection from the elevated initial tripole formed in large inferred supercooled liquid water concentrations and additional non-inductive charging in lower supercooled water concentration about 5 km to the side of the storm's strongest updraft.The data suggest that the normal vs. inverted polarity nomenclature is applicable to neither the whole storm nor the charging process itself. Any given normal or inverted region may be significantly influenced by charging processes operating outside of it. It is recommended that future studies of charge structure in storms utilize an interpretive framework which distinguishes between charging regions and regions of charge and ties them to conventional supercellular structural features and their microphysical history as observed in radar fields.
机译:偶极子,三极管和其他堆叠式电荷装置是对整个风暴的电气结构的一种诱人的便捷解释,当认为风暴是一种点现象时,它们可能会有所帮助。然而,具有单一运动的薄饼形电荷区域并不能很好地表示具有三维运动学和微观物理结构的风暴的内部电荷结构。在本研究中,闪电图和雷达数据来自2004年5月26日位于俄克拉荷马州中部的超级电池用于检查连续的雷电弧,这些雷弧是根据风暴上升气流中的脉冲而形成的。发现上升气流脉冲中的闪电演化与建立的超级单元降水形成和沉降模型相吻合。弧形的初始闪电包含在风暴弱回波区域上方的降水中。较低的正电荷集中在7 km处,负电荷在10 km处集中,而正电荷在12 km处,这被认为是由于冰晶和边缘格栅之间的非感应性电荷碰撞而形成的高正极性三极管。后来同时,两个不同的电荷区与到达地面的降水有关。在弱回波区域的左侧,推断出六个电荷区域以形成正常极性排列,其中正电荷在冰雹的底部堆积在冰雹上。在风暴的降水区域的更远处,推断出四个电荷区域,在堆栈底部带有负电荷,这是一个极性反转的结构。闪光灯偶尔会从该电荷区将正电荷降低到地面。暴风雨降水区的电荷结构是由于在较大的推断过冷液态水浓度中形成的高初始三极管产生的电荷对流,以及在距暴风雨最强气流上升侧约5 km处的较低过冷水浓度中形成的附加非感应性电荷。数据表明,正常极性与反向极性的术语不适用于整个风暴或充电过程本身。任何给定的正常或反向区域都可能会受到在其外部运行的充电过程的显着影响。建议将来对风暴中的电荷结构进行研究时,应使用解释性框架,该框架可区分电荷区域和电荷区域,并将其与常规超细胞结构特征及其在雷达场中观察到的微物理历史联系起来。

著录项

  • 作者

    Bruning, Eric.;

  • 作者单位

    The University of Oklahoma.;

  • 授予单位 The University of Oklahoma.;
  • 学科 Atmospheric Sciences.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号