首页> 外文学位 >Ultrafast dynamics in quantum cascade lasers: Electronic transport and coherent light-matter interaction.
【24h】

Ultrafast dynamics in quantum cascade lasers: Electronic transport and coherent light-matter interaction.

机译:量子级联激光器中的超快动力学:电子传输和相干光物质相互作用。

获取原文
获取原文并翻译 | 示例

摘要

To date, quantum cascade lasers are the only semiconductor laser sources that can cover a broad range of wavelength from mid-infrared down to terahertz frequency. The operation physics of quantum cascade lasers is qualitatively different from other conventional lasers; the lasing action is based on the unipolar characteristics, i.e. intersubband transition, giving rise to an atomic-like gain transition, and the superlattice transport, relaxation channel for hot electrons, which can not be found any analogues in any conventional laser systems.;In this thesis, the nature of electronic transport and the femtosecond pulse propagation in quantum cascade lasers have been addressed by using ultrafast optical techniques. In particular, the electronic transport in quantum cascade lasers was extensively investigated by using femtosecond time-resolved pump-probe techniques. Sub-picosecond resonant tunneling injection from the quantum cascade laser injector ground state into the upper lasing state was found to be incoherent due to strong dephasing in the active subband. The few-picosecond gain recovery due to transport through superlattice was observed and interpreted in terms of dielectric relaxation within the superlattice miniband. We also observed the strong coupling of the electronic transport to the intra-cavity photon density, which we term "photon-driven transport". By using an ultrafast upconversion method, the dispersion of the active waveguide was characterized by measuring the wavelength-dependent propagation delay. Contributions from material dispersion, waveguide dispersion, and small-signal gain dispersion were separated, and compared to the experimentally measured pulse broadening as for a self-consistency check. Pulse re-shaping and possible contribution of coherent effects on pulse propagation and gain dynamics were investigated by comparing weak versus strong pulse injection for various bias conditions.;In order to support the experimentally measured data, several quantum transport models were used: density-matrix formalism for the resonant tunneling process, Monte-Carlo simulation for the superlattice relaxation, and Maxwell-Bloch equation for the pulse propagation. All theoretical models strongly support the experimental results.
机译:迄今为止,量子级联激光器是唯一可以覆盖从中红外到太赫兹频率的广泛波长范围的半导体激光源。量子级联激光器的操作物理性质与其他常规激光器不同。激光作用是基于单极特性,即子带间跃迁,产生原子状增益跃迁,以及热电子的超晶格输运,弛豫通道,在任何常规激光系统中都找不到类似物。本文利用超快光学技术解决了量子级联激光器中电子传输的本质和飞秒脉冲的传播问题。特别是,通过使用飞秒时间分辨泵浦探针技术,对量子级联激光器中的电子传输进行了广泛研究。发现由于有源子带中的强相移,从量子级联激光注入器基态到上激光发射状态的亚皮秒共振隧穿注入是不相干的。观察到并通过超晶格的传输归因于几皮秒的增益恢复,并根据超晶格微带内的介电弛豫进行了解释。我们还观察到电子传输与腔内光子密度的强耦合,我们称之为“光子驱动传输”。通过使用超快速上变频方法,通过测量与波长有关的传播延迟来表征有源波导的色散。分离了来自材料色散,波导色散和小信号增益色散的贡献,并将其与实验测量的脉冲展宽进行了比较,以进行自洽检查。通过比较在各种偏置条件下的弱脉冲注入与强脉冲注入,研究了脉冲重塑以及相干效应对脉冲传播和增益动力学的可能贡献。为了支持实验测量的数据,使用了几种量子传输模型:密度矩阵共振隧穿过程的形式主义,超晶格弛豫的蒙特卡洛模拟,以及脉冲传播的麦克斯韦-布洛赫方程。所有理论模型都强烈支持实验结果。

著录项

  • 作者

    Choi, Hyunyong.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号