首页> 中文学位 >高压IGBT的设计与实现及功率器件可靠性研究
【6h】

高压IGBT的设计与实现及功率器件可靠性研究

代理获取

目录

声明

致谢

摘要

缩略词表

1 绪论

1.1 课题背景及意义

1.2 绝缘栅双极晶体管(IGBT)简介

1.2.1 IGBT的结构与工作原理简介

1.2.2 IGBT器件的工作模式

1.2.3 NPT-IGBT与PT-IGBT

1.3 国内外IGBT发展状况

1.4 功率器件的可靠性问题

1.5 本论文的主要工作及组织结构

1.5.1 论文的主要工作

1.5.2 论文的组织结构

2 高压NPT-IGBT器件的设计

2.1 高压IGBT器件的设计方法

2.2 高压NPT-IGBT器件的元胞设计

2.2.1 NPT-IGBT元胞纵向结构的设计

2.2.2 NPT-IGBT元胞横向结构的设计

2.3 高压NPT-IGBT器件终端结构的设计

2.3.1 场限环和场板技术

2.3.2 场限环和多晶硅场板复合的终端结构设计

2.4 高压NPT-IGBT器件的工艺流程设计

2.4.1 背面集电极工艺的开发

2.4.2 NPT-IGBT整体工艺流程的设计

2.5 高压NPT-IGBT器件的版图设计

2.6 本章小结

3 高压IGBT器件新结构的研究

3.1 具有双面扩散残留层的高压IGBT结构的提出

3.1.1 国内高压IGBT生产面临的问题

3.1.2 具有双面扩散残留层的高压IGBT结构及生产工艺简介

3.1.3 N+扩散残留层对击穿电压与集电极电流的影响

3.1.4 N+扩散残留层与JFET注入的对比

3.2 带有残留层的高压沟槽栅型IGBT(DR-IGBT)

3.2.1 正面载流子存储技术存在的问题

3.2.2 DR-IGBT器件结构与生产工艺

3.2.3 与LPT CSTBT和NPT-IGBT的比较

3.2.4 N+扩散层结深及残留层厚度对DR-IGBT的影响

3.3 带有P-缓冲层的NPN管辅助快速开关IGBT(NFS-IGBT)

3.3.1 快速开关IGBT的研究

3.3.2 NFS-IGBT器件结构及分析

3.3.3 NFS-IGBT器件性能的分析

3.3.4 P-缓冲层掺杂浓度及厚度对导通压降及关断时间的影响

3.3.5 导通压降与关断时间的折衷

3.4 本章小结

4 高压NPT-IGBT的流片、封装与测试

4.1 高压NPT-IGBT的流片

4.2 高压NPT-IGBT的封装

4.3 高压NPT-IGBT的测试

4.3.1 NPT-IGBT静态参数测试

4.3.2 NPT-IGBT动态参数测试

4.4 本章小结

功率器件的可靠性研究

5.1 NLDMOS的可靠性问题

5.2 SG-NLDMOS的器件描述

5.3 SG-NLDMOS的热载流子效应研究

5.3.1 直流电压应力实验

5.3.2 利用TCAD仿真分析退化机制

5.3.3 电荷泵测试

5.3.4 SG-NLDMOS的热载流子退化机制

5.3.5 Ndd注入剂量的影响

5.3.6 改善NLDMOS热载流子效应的方法

5.4 SG-NLDMOS在关态雪崩击穿下的退化研究

5.4.1 器件在关态雪崩击穿下的退化研究方法

5.4.2 电流脉冲应力实验及TCAD仿真

5.4.3 电荷泵测试

5.4.4 SG-NLDMOS在关态雪崩击穿下的退化机制

5.4.5 Ndd注入剂量的影响

5.5 本章小结

5 总结与展望

6.1 研究成果总结

6.2 对未来工作的展望

参考文献

作者简历及在学期间所取得的科研成果

展开▼

摘要

IGBT作为最新一代的复合全控型功率器件,具有电压控制、输入阻抗大、驱动功率小、控制电路简单、开关损耗小、工作频率高等诸多优点,而高压IGBT在电机控制、新能源、轨道交通、智能电网、电动汽车等领域起着不可替代的作用。由于国内工艺技术水平相对落后,高压IGBT的设计与生产长期落后于国外。本课题旨在结合现有国内工艺,研发具有自主知识产权的高压IGBT芯片,为高压IGBT在国内的研发和实现积累一定的经验。
  功率器件可靠性问题已经成为影响功率模块整体性能的关键问题之一。本论文通过对功率器件SG-NLDMOS在热流子退化及关态雪崩击穿下的退化进行仿真与实验研究,揭示其退化机制,并提出改进措施。此项研究可为功率器件的可靠性设计及评估体系提供一定的参考价值。
  本论文的主要工作及创新点包括:
  1、提出高压IGBT的设计方法,设计并实现了一款1700V/100A高压大电流NPT-IGBT,包括其元胞结构、终端结构、工艺流程及版图的设计。通过分析及仿真确定元胞的结构参数;采用场限环与场板相结合的终端结构,讨论场板的设置对终端结构的影响,提出多晶硅场板设置的方案;对IGBT背面的集电极工艺进行探索及优化;简化工艺流程,应用六块光刻版完成整个工艺流程;设计了栅电极置中的版图结构。
  2、提出了双面N+扩散残留层的新结构来改善平面栅型IGBT的JFET电阻,在改善器件导通压降的同时,击穿电压没有发生显著的下降;把N+扩散残留层应用到沟槽栅型IGBT当中,提出了DR-IGBT的结构,并与传统的NPT-IGBT和LPTCSTBT进行比较。与传统的NPT-IGBT相比,在相同的击穿电压下,其导通压降与电流能力更优;与LPTCSTBT相比,击穿电压更高,而导通压降则在大电流密度下比LPTCSTBT更低;引入背面P-缓冲层,提出了NPN管辅助快速开关的IGBT(NFS-IGBT)新结构,具有更好的导通压降与关断时间的折衷。
  3、采用中子嬗变掺杂的区熔单晶硅作为衬底,制作了多目标光刻版,流片完成后进行半桥模块的封装,并对IGBT器件进行了测试。击穿电压达到1700V以上,125℃下工作电流100A;阈值电压5.2V左右、栅发射极漏电流小于80nA、关断时间0.744μs、关断功耗25mJ,都达到设计要求,只是导通压降略高(3.7V)。
  4、采用直流电压应力实验、TCAD仿真、电荷泵测试,对SG-NLDMOS器件的热载流子效应进行研究,揭示热载流子效应与栅压相关,在中等栅压下,热载流子退化发生在积累区,界面态和氧化层陷阱电荷同时发生作用;在高栅压下,退化发生在侧墙区,界面态起主导作用;研究了结构参数Ndd对热载流子效应的影响,并提出了改善措施。采用电流脉冲应力实验、TCAD仿真和电荷泵测试,研究了SG-NLDMOS的关态雪崩击穿退化机制,发现雪崩击穿退化近似于高栅压和中等栅压下热载流子退化的叠加,氧化层陷阱正电荷主要产生于积累区,而界面态在整个漂移区中都有增加。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号