首页> 外文会议>XIVth International Conference on Computational Methods in Water Resources (CMWR XIV), Jun 23-28, 2002, Delft, The Netherlands >Numerical simulation of surface runoff with coupled two-dimensional overland flow and one-dimensional stream network flow
【24h】

Numerical simulation of surface runoff with coupled two-dimensional overland flow and one-dimensional stream network flow

机译:二维陆上水流与一维河网流耦合的地表径流数值模拟

获取原文
获取原文并翻译 | 示例

摘要

In the surface flow component of a physically based watershed model, the complete two-dimensional Saint Venant equations and their approximations are applied for overland flow simulations, while a one-dimensional counterpart is used for river/stream network flow. A suite of options including full dynamic wave, diffusive wave and kinematic wave models is included. When the wave propagation in surface runoff is dominated by inertial forces, the fully dynamic wave model is mandated. If the inertial forces are negligible, diffusive or kinematic wave models are appropriate. In the latter case, pressure forces are also neglected. For fully dynamic wave model, the method of characteristics (MOC), which is best suited for hyperbolic equations, is applied to approximate the governing equations. The simplified diffusive wave model is solved by either the Galerkin finite element method or semi-Lagragian method. Since the kinematic wave model represents the pure advec-tion of wave phenomena, it is suitable to use a semi-Lagrangian method. The hydraulic structures, river junctions and other internal boundary conditions are also completely incorporated into each option. The internal coupling at the interface of overland flow and stream flow are considered. Several numerical experiments are used to test the accuracy and stability of the new numerical model.
机译:在基于物理流域模型的地表流分量中,完整的二维Saint Venant方程及其近似值用于陆上水流模拟,而一维对应物用于河流/河流网络流。包括一整套选项,包括全动态波,扩散波和运动波模型。当地表径流中的波传播受惯性力支配时,就必须建立全动态波模型。如果惯性力可以忽略不计,则应采用扩散或运动波模型。在后一种情况下,压力也被忽略。对于全动态波动模型,采用最适合双曲方程的特征方法(MOC)来近似控制方程。简化的扩散波模型可以通过Galerkin有限元方法或半Lagragian方法求解。由于运动学波动模型表示波动现象的纯对流,因此适合使用半拉格朗日方法。水工结构,河流交界处和其他内部边界条件也完全纳入了每个选项。考虑了陆上径流与河流径流之间的内部耦合。几个数值实验被用来测试新数值模型的准确性和稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号