首页> 外文会议>World water and environmental resources congress 2003 and related symposia >Higher-Order Approximations for Saturated Flow in Randomly Heterogeneous Media via Karhunen-Loéve Decomposition
【24h】

Higher-Order Approximations for Saturated Flow in Randomly Heterogeneous Media via Karhunen-Loéve Decomposition

机译:通过Karhunen-Loéve分解在随机非均质介质中的饱和流的高阶近似

获取原文
获取原文并翻译 | 示例

摘要

In this study, we consider transient saturated flow in randomly heterogeneous porous media and try to obtain higher-order solutions of mean head and mean flux, as well as their associated uncertainties based on the combination of Karhunen-Loeve decomposition and perturbation methods. We first decompose the log hydraulic conductivity Y = lnKs as an infinite series on the basis of a set of orthogonal Gaussian standard random variables. The coefficients of the series are related to eigenvalues and eigenfunctions of the covariance function of the log hydraulic conductivity. We then write head as an infinite series whose terms h(n) represent the hydraulic head of nth order in terms of σY, the standard deviation of Y, and derive a set of recursive equations for h(n). We assume that h(n) can be expressed as infinite series in terms of products of n Gaussian random variables. The coefficients in these series are determined by substituting decompositions of Y and h(n) into those recursive equations. We solve the mean head (and mean flux) up to fourth order in σY and the head (and flux) variances up to third order in σY 2. We conduct Monte Carlo simulations (MC) and compare MC results against approximations of various orders from our moment-equation approach on the basis of Karhunen-Loeve decomposition (KLME). We also compare our results with those from first-order conventional moment-equation approach (CME). It is evident that the KLME approach with higher-order corrections is superior to firstorder approximations and is computationally more efficient than Monte Carlo simulations and the conventional moment-equation approach.
机译:在这项研究中,我们考虑了随机非均质多孔介质中的瞬态饱和流,并尝试根据Karhunen-Loeve分解和摄动方法的组合获得平均水头和平均通量的高阶解及其相关的不确定性。我们首先基于一组正交的高斯标准随机变量将对数水力传导率Y = lnKs分解为无穷级数。该级数的系数与对数水力传导率的协方差函数的特征值和特征函数有关。然后,我们将压头写为一个无限级数,其项h(n)代表σY(Y的标准偏差)表示n阶液压头,并推导了一组h(n)的递归方程。我们假设h(n)可以表示为n个高斯随机变量的乘积。这些序列中的系数是通过将Y和h(n)的分解代入这些递归方程式来确定的。我们用σY求解直到四阶的平均水头(和平均通量),而在σY2求解到三阶的平均水头(和通量)方差。我们进行了蒙特卡洛模拟(MC),并将MC结果与来自我们基于Karhunen-Loeve分解(KLME)的矩等式方法。我们还将我们的结果与一阶常规矩方程法(CME)的结果进行比较。显然,具有高阶校正的KLME方法优于一阶逼近,并且在计算上比蒙特卡洛模拟和常规矩量法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号