首页> 外文期刊>Applied Mathematical Modelling >Adaptive higher-order space-time discontinuous Galerkin method for the computer simulation of variably-saturated porous media flows
【24h】

Adaptive higher-order space-time discontinuous Galerkin method for the computer simulation of variably-saturated porous media flows

机译:可变饱和多孔介质流计算机模拟的自适应高阶时空不连续Galerkin方法

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the numerical simulation of time-dependent variably-saturated Darcian flow problems described by the Richards equation. We present the adaptive higher-order space-time discontinuous Galerkin (hp-STDG) method which optimizes accuracy and efficiency by balancing the errors that arise from the space and time discretizations and from the resulting nonlinear algebraic system. Convergence problems related to the transition between unsaturated flow and saturated flow are eliminated by regularizing the constitutive formulas. We also present an hp-anisotropic mesh adaptation technique capable of generating unstructured triangular elements with optimal sizes, shapes, and polynomial approximation degrees. Several numerical experiments are presented to demonstrate the accuracy, efficiency, and robustness of the numerical method presented here. (C) 2019 Elsevier Inc. All rights reserved.
机译:本文涉及由Richards方程描述的随时间变化的饱和饱和Darcian流问题的数值模拟。我们提出了自适应高阶时空不连续伽勒金(hp-STDG)方法,该方法通过平衡由时空离散和由此产生的非线性代数系统引起的误差,从而优化了精度和效率。通过规范化本构公式,可以消除与不饱和流和饱和流之间的过渡有关的收敛问题。我们还提出了一种hp各向异性网格自适应技术,该技术能够生成具有最佳大小,形状和多项式逼近度的非结构化三角形元素。提出了几个数值实验,以证明此处提出的数值方法的准确性,效率和鲁棒性。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号