首页> 外文会议>World Multiconference on Systemics, Cybernetics and Informatics(SCI 2002) v.7: Information Systems Development II; 20020714-20020718; Orlando,FL; US >The Development of Dynamic Travel Time Prediction Models for South Jersey Real-Time Motorist Information System
【24h】

The Development of Dynamic Travel Time Prediction Models for South Jersey Real-Time Motorist Information System

机译:新泽西州实时驾车者信息系统的动态旅行时间预测模型的开发

获取原文
获取原文并翻译 | 示例

摘要

This study develops a dynamic travel time prediction model for the South Jersey Motorist Real-time Information System. In order to develop an effective and sound predictive system for travel times, the integration of traffic flow theory, management and application of collected data are considered to construct the proposed model, which can generate reliable and accurate prediction results with limited traffic information. A new approach for predicting travel time is proposed considering both the real-time and historical traffic conditions. In this study, a number of sensors are installed at congested places to monitor traffic congestions. A calibrated simulation model is developed to emulate traffic operations for evaluating prediction accuracy. With the travel times collected from the sensors and simulation model, the Kalman filter model is applied to forecast the travel times over different time periods. The results show that the proposed method demonstrates a satisfactory performance.
机译:这项研究开发了动态行驶时间预测模型,用于新泽西州驾车者实时信息系统。为了开发一种行之有效的行车时间预测系统,考虑了交通流理论,收集数据的管理和应用的综合,构建了所提出的模型,该模型可以在交通信息有限的情况下生成可靠,准确的预测结果。考虑到实时和历史交通状况,提出了一种预测出行时间的新方法。在这项研究中,在拥挤的地方安装了许多传感器以监视交通拥堵。开发了经过校准的仿真模型来仿真交通运营,以评估预测准确性。利用从传感器和仿真模型收集的行驶时间,卡尔曼滤波器模型可用于预测不同时间段的行驶时间。结果表明,所提出的方法具有令人满意的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号