首页> 外文会议>World Multiconference on Systemics, Cybernetics and Informatics(SCI 2001) v.9: Industrial Systems pt.1; 20010722-20010725; Orlando,FL; US >Embedding Inductively Developed Models in Transactional Database Systems: Examples Using Multi-Strategy Classification Models
【24h】

Embedding Inductively Developed Models in Transactional Database Systems: Examples Using Multi-Strategy Classification Models

机译:在事务数据库系统中嵌入归纳开发的模型:使用多策略分类模型的示例

获取原文
获取原文并翻译 | 示例

摘要

Multiple frameworks have been developed for the comparison of classification models that account for the overall accuracy of decisions made by models. Among such frameworks are confusion matrices and ROC (receiver operating characteristic) curves. These frameworks adequately capture trade-offs between a model's specificity and sensitivity. However, as inductively developed classification models are increasingly working their way into transactional environments, an additional element requires consideration, namely performance, or the speed with which accurate decisions can be made. This paper evaluates alternatives for the deployment of a neural network in a transactional environment, thus establishing the need to explore performance as a constraint to more traditional methods of model assessment.
机译:为了比较分类模型,已经开发了多个框架,这些框架考虑了模型决策的整体准确性。在这样的框架中有混淆矩阵和ROC(接收机工作特性)曲线。这些框架充分体现了模型的特异性和敏感性之间的权衡。但是,随着归纳开发的分类模型越来越多地进入交易环境,需要考虑一个附加因素,即性能或做出准确决策的速度。本文评估了在交易环境中部署神经网络的替代方法,从而建立了探索性能作为对传统评估方法的约束的需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号