【24h】

A Semantic-based Knowledge Acquisition Study on Hong Kong Stock Movement

机译:基于语义的香港股票走势知识获取研究

获取原文
获取原文并翻译 | 示例

摘要

Human beings usually analyze daily information with some kinds of semantic-based expectations. This helps to put the analysis in the correct context and perspective, and speed up the processing time for knowledge understanding. This paper proposes a semantic expectation-based knowledge extraction methodology (SEKE) to capitalize on this type of intelligent human behaviour for extracting causation relations from text. In particular, we study the application of a causation semantic template on the Hong Kong Stock market movement (Hang Seng Index) with English financial news from Reuters, South China Morning Post and Hong Kong Standard. With one-month data input and a six-month testing period, the system shows that it can correctly analyse single reason sentences with about 79% precision and 77% recall rates. As the proposed framework is language independent, we expect cross lingual knowledge extraction can also work well with this semantic expectation-based framework.
机译:人们通常以某种基于语义的期望来分析日常信息。这有助于将分析放在正确的上下文和视角中,并加快知识理解的处理时间。本文提出了一种基于语义期望的知识提取方法(SEKE),以利用这种类型的智能人类行为从文本中提取因果关系。特别是,我们根据路透社,《南华早报》和香港标准的英文财经新闻,研究了因果语义模板在香港股市走势(恒生指数)上的应用。通过一个月的数据输入和六个月的测试时间,该系统表明它可以以大约79%的精度和77%的查全率正确分析单原因语句。由于所提出的框架是独立于语言的,因此我们希望跨语言知识的提取也可以与基于语义期望的框架很好地协同工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号