【24h】

Ontogenetic Development of Skills, Strategies and Goals for Autonomously Behaving Systems

机译:自主行为系统的技能,策略和目标的本体发展

获取原文
获取原文并翻译 | 示例

摘要

Biological organisms display an amazing ability during their ontogenetic development to adaptively develop solutions to the various problems of survival that their environments present to them. Dynamical and embodied models of cognition are beginning to offer new insights into how the numerous, heterogeneous elements of neural structures may self-organize during the development of the organism in order to effectively form adaptive categories and increasingly sophisticated skills, strategies and goals. The ontogenetic development of behavior in biological organisms represents a significant level of improvement over current approaches to machine learning. In this paper we discuss the possibility of building action selection mechanisms for autonomous agents based upon new insights into how exactly biological organisms manage to self-organize patterns of behavior during their ontogenetic development. We present a simple task environment that, nevertheless, affords opportunities for the hierarchical development of increasingly complex behaviors in humans. We present some results of standard machine learning mechanisms on performing this task. And finally we discuss future plans for developing models of the ontogenetic development of behavior for autonomous agents in the task environment.
机译:生物有机体在其个体发育过程中显示出惊人的能力,可以适应性地开发解决环境所面临的各种生存问题的解决方案。动态和具体化的认知模型开始提供新的见解,以了解在生物体发育过程中神经结构的众多异类元素如何自我组织,从而有效地形成适应性类别和日益复杂的技能,策略和目标。与目前的机器学习方法相比,生物有机体中行为的本体发展代表了显着的进步。在本文中,我们将基于对生物体在个体发育过程中如何精确地自组织行为模式的新见解,讨论为自主主体建立行动选择机制的可能性。我们提供了一个简单的任务环境,但是,它为人类日益复杂的行为的层次发展提供了机会。我们介绍了执行此任务时标准机器学习机制的一些结果。最后,我们讨论了在任务环境中开发自主代理行为的本体发展模型的未来计划。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号