【24h】

An Automated System for Detection and Segmentation of Masses in Digital Mammograms

机译:自动检测和分割乳腺X线照片中的质量的自动系统

获取原文
获取原文并翻译 | 示例

摘要

A computer scheme capable of providing objective information may aid radiologists in their diagnosis of masses, thus preventing unnecessary biopsies. In this paper, a computer-aided system for automatic detection and segmentation of masses in mammograms is presented. The system is designed based on a sequence of successive preprocessing procedures followed by the PNN detection and entropic thresholding-based segmentation methods. The preprocessing is carried out by two stages. The first stage enhances the gradients of pixels with high intensities, and the second stage uses a median filter to eliminate the noise effects in the background of ROI. In order to do the detection and segmentation of masses, five texture features are used for differentiating masses from normal breast tissue on mammograms. The approach of detection and segmentation involves (1) automatic masses detection using texture features on PNN and (2) automatic masses extraction using entropic thresholding-based method. The designed system was tested by a data set provided by Taichung Veteran General Hospital, the results showing promises of the proposed system.
机译:能够提供客观信息的计算机方案可以帮助放射科医生诊断肿块,从而避免不必要的活检。在本文中,提出了一种计算机辅助系统,用于自动检测和分割乳房X光照片中的质量。该系统的设计基于一系列连续的预处理程序,然后是PNN检测和基于熵阈值的分割方法。预处理分两个阶段进行。第一阶段以高强度增强像素的梯度,第二阶段使用中值滤波器消除ROI背景中的噪声影响。为了进行肿块的检测和分割,在乳房X线照片上使用了五个纹理特征来区分肿块与正常乳腺组织。检测和分割的方法包括(1)使用PNN上的纹理特征进行自动质量检测,以及(2)使用基于熵阈值的方法自动进行质量提取。台中荣民总医院提供的数据集对设计的系统进行了测试,结果表明了拟议系统的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号