首页> 外文会议>World congress on high speed rail >High Speed Rail Tunnel Aerodynamics: Transient Pressure and Loadings on Fixed Tunnel Equipment
【24h】

High Speed Rail Tunnel Aerodynamics: Transient Pressure and Loadings on Fixed Tunnel Equipment

机译:高铁隧道的空气动力学:固定隧道设备上的瞬态压力和载荷

获取原文

摘要

Trains entering tunnels at high speeds can generate highly transient air velocity and pressure fields inside the tunnel, from time of entry until well after they leave the tunnel. The parameters affecting the induced velocity and pressure fields include train speed, train to tunnel blockage ratio, train to tunnel length ratio, shape of train nose and tail, and the number, spacing intervals and area of pressure relief shafts. Compression waves continuously induced by the train nose propagate along the tunnel at the speed of sound, and compress and accelerate air in front of it, until they reach the exit portal. These will then reflect as re-. fraction waves, interact with other travelling waves and set up complex micro-pressure wave patterns and airflows. Some of the rapid pressure changes can create aural discomfort for passengers. The designer has to ensure that the cross sectional area of the tunnel is large enough so as not to exceed these maximum pressure thresholds. In cases where the tunnel cross section cannot be met, other engineering solutions like the provision of pressure relief shafts are considered. Apart from provision of pressure relief, a separate mechanical ventilation system is needed to provide- a safe environment during an emergency fire incident, as well as a comfort for passengers in a train congestion scenario. While large axial fans in supply and extract configuration have been the traditional solution, other approaches are possible like Saccardo nozzles and jet fans, as used in the Channel Tunnel Rail Link (HS1). Thus the issue of transient forces and moments on installed e-quipment such as fans, signs, brackets and panels in high-speed tunnels are discussed, drawing on the experience of HS1.
机译:从进入的时间到离开隧道后的很长时间,高速进入隧道的列车会在隧道内部产生高度瞬态的空气速度和压力场。影响感应速度场和压力场的参数包括列车速度,列车与隧道的阻塞比,列车与隧道的长度比,列车的机头和机尾的形状以及泄压井的数量,间隔和面积。火车头连续感应产生的压缩波以声速沿隧道传播,压缩并加速其前方的空气,直到到达出口。然后,这些将重新反映。分数波,与其他行波相互作用,并建立复杂的微压波模式和气流。一些快速的压力变化会给乘客造成听觉不适。设计人员必须确保通道的横截面积足够大,以不超过这些最大压力阈值。在无法满足隧道横截面的情况下,可以考虑采用其他工程解决方案,例如设置泄压井。除了提供压力释放外,还需要单独的机械通风系统以在紧急火灾中提供安全的环境,并在火车拥堵的情况下为乘客提供舒适的环境。尽管采用供气和抽气配置的大型轴流风机是传统的解决方案,但其他方法也是可行的,例如通道隧道铁路(HS1)中使用的萨卡多喷嘴和射流风机。因此,根据HS1的经验,讨论了已安装的电子设备(例如,高速隧道中的风扇,标志,支架和面板)上的瞬时力和力矩的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号