首页> 外文会议>Workshop on web search click data 2009 >Incremental Learning to Rank with Partially-Labeled Data
【24h】

Incremental Learning to Rank with Partially-Labeled Data

机译:增量学习对部分标签数据进行排名

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present a semi-supervised learning method for a problem of learning to rank where we exploit Markov random walks and graph regularization in order to incorporate not only "labeled" web pages but also plenty of "un-labeled" web pages (click logs of which are not given) into learning a ranking function. In order to cope with scalability which existing semi-supervised learning methods suffer from, we develop a scalable and incremental method for semi-supervised learning to rank. In the graph regularization framework, we first determine features which well reflects data manifold and then make use of them to train a linear ranking function. We introduce a matrix-fee technique where we compute the eigenvectors of a huge similarity matrix without constructing the matrix itself. Then we present an incremental algorithm to learn a linear ranking function using features determined by projecting data onto the eigenvectors of the similarity matrix, which can be applied to a task of web-scale ranking. We evaluate our method on Live Search query log, showing that search performance is much improved when Live Search yields unsatisfactory search results.
机译:在本文中,我们提出了一种半监督学习方法,用于解决学习马尔可夫随机游走和图正则化的排名问题,以便不仅合并“标记”网页,而且还合并大量“未标记”网页(点击日志(未提供)以学习排名功能。为了应对现有的半监督学习方法所遭受的可扩展性,我们开发了一种用于半监督学习的可扩展和增量式方法。在图正则化框架中,我们首先确定可以很好地反映数据流形的特征,然后利用它们来训练线性排名函数。我们引入一种矩阵费用技术,在此技术中,我们无需构建矩阵本身即可计算出巨大相似矩阵的特征向量。然后,我们提出一种增量算法,以使用通过将数据投影到相似矩阵的特征向量上而确定的特征来学习线性排名函数,该算法可以应用于网络规模排名的任务。我们在Live Search查询日志中评估了我们的方法,结果表明,当Live Search产生不令人满意的搜索结果时,搜索性能会大大提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号