首页> 外文会议>Workshop on new frontiers in summarization 2017 >Learning to Score System Summaries for Better Content Selection Evaluation.
【24h】

Learning to Score System Summaries for Better Content Selection Evaluation.

机译:学习对系统摘要进行评分,以更好地进行内容选择评估。

获取原文
获取原文并翻译 | 示例

摘要

The evaluation of summaries is a challenging but crucial task of the summarization field. In this work, we propose to learn an automatic scoring metric based on the human judgements available as part of classical summarization datasets like TAC-2008 and TAC-2009. Any existing automatic scoring metrics can be included as features, the model learns the combination exhibiting the best correlation with human judgments. The reliability of the new metric is tested in a further manual evaluation where we ask humans to evaluate summaries covering the whole scoring spectrum of the metric. We release the trained metric as an open-source tool.
机译:总结的评估是总结领域中具有挑战性但至关重要的任务。在这项工作中,我们建议根据人为判断(如TAC-2008和TAC-2009这样的经典摘要数据集的一部分)学习自动评分标准。任何现有的自动评分指标都可以作为特征包括在内,该模型将学习与人的判断具有最佳相关性的组合。新度量标准的可靠性在进一步的手动评估中进行了测试,我们要求人类评估涵盖该度量标准整个评分范围的摘要。我们将经过训练的指标作为开源工具发布。

著录项

  • 来源
  • 会议地点 Copenhagen(DK)
  • 作者单位

    Research Training Group AIPHES and UKP Lab Computer Science Department, Technische Universitaet Darmstadt;

    Research Training Group AIPHES and UKP Lab Computer Science Department, Technische Universitaet Darmstadt;

    Research Training Group AIPHES and UKP Lab Computer Science Department, Technische Universitaet Darmstadt;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号