首页> 外文会议>10th workshop on computational approaches to subjectivity, sentiment and social media analysis >Keynote talk: Modeling Empathy and Distress in Reaction to News Stories
【24h】

Keynote talk: Modeling Empathy and Distress in Reaction to News Stories

机译:主题演讲:对新闻报道的反应中的同情和苦恼建模

获取原文
获取原文并翻译 | 示例

摘要

Computational detection and understanding of empathy is an important factor in advancing human-computer interaction. Yet to date, text-based empathy prediction has the following major limitations: It underestimates the psychological complexity of the phenomenon, adheres to a weak notion of ground truth where empathic states are ascribed by third parties, and lacks a shared corpus. In contrast, this talk describes the first publicly available gold standard for empathy prediction. It is constructed using a novel annotation methodology which reliably captures empathy assessments by the writer of a statement using multi-item scales. This is also the first computational work distinguishing between multiple forms of empathy, empathic concern, and personal distress, as recognized throughout psychology.
机译:对共情的计算检测和理解是推进人机交互的重要因素。迄今为止,基于文本的共情预测具有以下主要局限性:它低估了现象的心理复杂性,坚持了一种基于地面事实的弱概念,即共情状态是由第三方赋予的,并且缺乏共享语料库。相比之下,本演讲描述了共情预测的第一个公开可用的黄金标准。它使用新颖的注释方法构建,该注释方法使用多项目量表可靠地捕获语句作者的同情评估。这也是区分心理学,同情心,同情心关注和个人痛苦的多种形式的第一项计算工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号