【24h】

Cross-lingual Subjectivity Detection for Resource Lean Languages

机译:资源精益语言的跨语言主观性检测

获取原文
获取原文并翻译 | 示例

摘要

Wide and universal changes in the web content due to the growth of web 2 applications increase the importance of user-generated content on the web. Therefore, the related research areas such as sentiment analysis, opinion mining and subjectivity detection receives much attention from the research community. Due to the diverse languages that web-users use to express their opinions and sentiments, research areas like subjectivity detection should present methods which are practicable on all languages. An important prerequisite to effectively achieve this aim is considering the limitations in resource-lean languages. In this paper, cross-lingual subjectivity detection on resource lean languages is investigated using two different approaches: a language-model based and a learning-to-rank approach. Experimental results show the impact of different factors on the performance of subjectivity detection methods using English resources to detect the subjectivity score of Persian documents. The experiments demonstrate that the proposed learning-to-rank method outperforms the baseline method in ranking documents based on their subjectivity degree.
机译:由于Web 2应用程序的增长,Web内容发生了广泛而普遍的变化,这增加了用户在Web上生成的内容的重要性。因此,情感分析,观点挖掘和主观性检测等相关研究领域受到了研究界的广泛关注。由于网络用户使用多种语言来表达他们的观点和观点,因此诸如主观性检测之类的研究领域应提出适用于所有语言的方法。有效实现此目标的重要先决条件是考虑资源贫乏语言的局限性。在本文中,使用两种不同的方法研究了资源贫乏语言的跨语言主观性检测:基于语言模型的学习和等级学习方法。实验结果表明,使用英语资源检测波斯语文档的主观评分时,不同因素对主观性检测方法性能的影响。实验表明,基于文档的主观度,本文提出的学习排序方法优于基线方法。

著录项

  • 来源
  • 会议地点 Minneapolis(US)
  • 作者单位

    School of Computer Science and Engineering, University of Washington;

    School of Electrical and Computer Engineering, College of Engineering, University of Tehran,Computer Science Department, University of Houston;

    School of Electrical and Computer Engineering, College of Engineering, University of Tehran,School of Computer Science, Institute for Research in Fundamental Sciences (IPM)University of Tehran;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号