首页> 外文会议>International Conference on Wireless Communications Signal Processing;WCSP 2009 >Easy-hardware-implementation MMPF for maneuvering target tracking
【24h】

Easy-hardware-implementation MMPF for maneuvering target tracking

机译:易于实现的MMPF机动目标跟踪

获取原文

摘要

In this paper, we present an easy-hardware-implementation multiple model particle filter (MMPF) for maneuvering target tracking. In this proposed filter, the sampling importance resampling (SIR) filter is extended to multiple models that consist of two models, namely a constant velocity (CV) model and a “current” statistical (CS) model, and the Independent Metropolis Hasting (IMH) sampler is utilized for the resampling step in each model. Compared with the standard MMPF, the proposed MMPF requires no knowledge of models and model transition probabilities for different maneuvering motions, and keeps a constant number of particles per model at all times. This allows a regular pipelined hardware structure and can be implemented in hardware easily. Furthermore, using the IMH sampler for the resampling step avoids the bottleneck introduced by the traditional systematic resampler and reduces the latency of the whole implementations. Simulation results indicate that the proposed filter shows approximately equal tracking performance with the standard MMPF.
机译:在本文中,我们提出了一种用于操作目标跟踪的易于硬件实现的多模型粒子滤波器(MMPF)。在此提出的过滤器中,采样重要性重采样(SIR)过滤器扩展到多个模型,该模型包括两个模型,即恒速(CV)模型和“当前”统计(CS)模型以及独立都会黑斯廷(IMH) )采样器用于每个模型的重采样步骤。与标准的MMPF相比,提出的MMPF不需要了解模型和不同机动运动的模型转换概率,并且可以始终保持每个模型的粒子数量恒定。这允许常规的流水线硬件结构,并且可以轻松地在硬件中实现。此外,将IMH采样器用于重采样步骤可避免传统系统重采样器引入的瓶颈,并减少整个实现的延迟。仿真结果表明,所提出的滤波器显示出与标准MMPF大致相同的跟踪性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号