首页> 外文会议>Web technologies and applications. >Multiple Time Series Anomaly Detection Based on Compression and Correlation Analysis: A Medical Surveillance Case Study
【24h】

Multiple Time Series Anomaly Detection Based on Compression and Correlation Analysis: A Medical Surveillance Case Study

机译:基于压缩和相关分析的多时间序列异常检测:医学监测案例研究

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a novel anomaly detection framework for multiple heterogeneous yet correlated time series, such as the medical surveillance series data. In our framework, we propose an anomaly detection algorithm from the viewpoint of trend and correlation analysis. Moreover, to efficiently process huge amount of observed time series, a new clustering-based compression method is proposed. Experimental results indicate that our framework is more effective and efficient than its peers.
机译:在本文中,我们提出了一种针对多个异构但相关的时间序列的新颖异常检测框架,例如医疗监视序列数据。在我们的框架中,我们从趋势和相关分析的角度提出了一种异常检测算法。此外,为了有效地处理大量的观测时间序列,提出了一种新的基于聚类的压缩方法。实验结果表明,我们的框架比同类框架更为有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号