首页> 外文会议>Web information systems engineering- WISE 2013 workshops >HG-Bitmap Join Index: A Hybrid GPU/CPU Bitmap Join Index Mechanism for OLAP
【24h】

HG-Bitmap Join Index: A Hybrid GPU/CPU Bitmap Join Index Mechanism for OLAP

机译:HG位图联接索引:OLAP的混合GPU / CPU位图联接索引机制

获取原文
获取原文并翻译 | 示例

摘要

In-memory big data OLAP(on-line analytical processing) is time consuming task for data access latency and complex star join processing overhead. GPU is introduced to DBMSs for its remarkable parallel computing power but also restricted by its limited GPU memory size and low PCI-E bandwidth between GPU and memory. GPU is suitable for linear processing with its powerful SIMD(Single Instruction Multiple Data) parallel processing, and lack efficiency for complex control and logic processing. So how to optimize management for dimension tables and fact table, how to dispatch different processing stages of OLAP(Select, Project, Join, Grouping, Aggregate) between CPU and GPU devices and how to minimize data movement latency and maximize parallel processing efficiency of GPU are important for a hybrid GPU/CPU OLAP platform. We propose a hybrid GPU/CPU Bitmap Join in-dex(HG-Bitmap Join index) for OLAP to exploit a GPU memory resident join index mechanism to accelerate star join in a star schema OLAP workload. We design memory constraint bitmap join index with fine granularity keyword based bitmaps from TOP K predicates to accurately assign specified GPU memory size for specified frequent keyword bitmap join indexes. An OLAP query is transformed into bitwise operations on matched bitmaps first to generate global bitmap filter to minimize big fact table scan cost. In this mechanism, GPU is fully utilized with simple bitmap store and processing, the small bitmap filter from GPU to memory minimizes the data movement overhead, and the hybrid GPU/CPU join index can improve OLAP performance dramatically.
机译:内存中大数据OLAP(联机分析处理)是一项耗时的任务,因为它会导致数据访问延迟和复杂的星形连接处理开销。 GPU被引入DBMS的原因在于其出色的并行计算能力,但同时也受其有限的GPU内存大小以及GPU与内存之间的PCI-E带宽低的限制。 GPU具有强大的SIMD(单指令多数据)并行处理功能,适合于线性处理,但缺乏复杂控制和逻辑处理的效率。因此,如何优化维度表和事实表的管理,如何在CPU和GPU设备之间调度OLAP的不同处理阶段(选择,项目,联接,分组,聚合),以及如何最小化数据移动延迟并最大化GPU的并行处理效率对于混合GPU / CPU OLAP平台很重要。我们提出了一种用于OLAP的混合GPU / CPU位图联接索引(HG-Bitmap Join index),以利用GPU内存驻留联接索引机制来加速星型模式OLAP工作负载中的星型联接。我们使用来自TOP K谓词的基于精细粒度关键字的位图设计内存约束位图连接索引,以便为指定的频繁关键字位图连接索引准确分配指定的GPU内存大小。 OLAP查询首先转换为对匹配位图的按位运算,以生成全局位图过滤器,以最大程度地减少大事实表扫描成本。在这种机制中,GPU可以通过简单的位图存储和处理得到充分利用,从GPU到内存的小位图过滤器可最大程度地减少数据移动开销,并且GPU / CPU的混合连接索引可以显着提高OLAP性能。

著录项

  • 来源
  • 会议地点 Nanjing(CN)
  • 作者单位

    School of Information, Renmin University of China, Beijing 100872, China ,DEKE Lab, Renmin University of China, Beijing 100872, China;

    School of Information, Renmin University of China, Beijing 100872, China ,National Survey Research Center at Renmin University of China, Beijing 100872, China;

    School of Information, Renmin University of China, Beijing 100872, China ,DEKE Lab, Renmin University of China, Beijing 100872, China;

    School of Information, Renmin University of China, Beijing 100872, China ,DEKE Lab, Renmin University of China, Beijing 100872, China;

    School of Information, Renmin University of China, Beijing 100872, China ,DEKE Lab, Renmin University of China, Beijing 100872, China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    OLAP; hybrid GPU/CPU platform; star join; bitmap join index;

    机译:OLAP;混合GPU / CPU平台;明星加盟;位图连接索引;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号