首页> 外文期刊>Journal of Parallel and Distributed Computing >Hybrid KNN-join: Parallel nearest neighbor searches exploiting CPU and GPU architectural features
【24h】

Hybrid KNN-join: Parallel nearest neighbor searches exploiting CPU and GPU architectural features

机译:Hybrid Knn-Join:并行最近的邻权搜索CPU和GPU架构功能

获取原文
获取原文并翻译 | 示例

摘要

K Nearest Neighbor (KNN) joins are used in scientific domains for data analysis, and are building blocks of several well-known algorithms. KNN-joins find the KNN of all points in a dataset. This paper focuses on a hybrid CPU/GPU approach for low-dimensional KTVN-joins, where the GPU may not yield substantial performance gains over parallel CPU algorithms. We utilize a work queue that prioritizes computing data points in high density regions on the GPU, and low density regions on the CPU, thereby taking advantage of each architecture's relative strengths. Our approach, HYBRIDKNN-JOIN, effectively augments a state-of-the-art multi-core CPU algorithm. We propose optimizations that (ⅰ) maximize GPU query throughput by assigning the GPU large batches of work; (ⅱ) increase workload granularity to optimize GPU utilization; and, (ⅲ) limit load imbalance between CPU and GPU architectures. We compare HYBRIDKNN-JOIN to one GPU and two parallel CPU reference implementations. Compared to the reference implementations, we find that the hybrid algorithm performs best on larger workloads (dataset size and K). The methods employed in this paper show promise for the general division of work in other hybrid algorithms.
机译:K最近邻居(KNN)加入用于数据分析的科学域,是几种众所周知的算法的构建块。 KNN加入在数据集中找到所有点的knn。本文重点介绍了用于低维ktvn-联接的混合CPU / GPU方法,其中GPU可能不会通过并行CPU算法产生实质性的性能。我们利用了一个工作队列,优先考虑GPU上的高密度区域中的计算数据点,以及CPU上的低密度区域,从而利用每个架构的相对强度。我们的方法,Hybridkn-Join,有效增强了最先进的多核CPU算法。我们提出了优化(Ⅰ)通过分配GPU大批工作来最大化GPU查询吞吐量; (Ⅱ)增加工作量粒度以优化GPU利用率; (Ⅲ)限制CPU和GPU架构之间的负载不平衡。我们将Hybridknn-Join与一个GPU和两个并行CPU参考实现进行比较。与参考实现相比,我们发现混合算法在较大的工作负载上执行最佳(数据集大小和k)。本文所采用的方法显示了其他混合算法中的一般工作分工的承诺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号