首页> 外文会议>Water Pollution IX : Modelling, Monitoring and Management >Application of dynamic parametric sensitivity analysis for identifying contaminant sources in a watershed
【24h】

Application of dynamic parametric sensitivity analysis for identifying contaminant sources in a watershed

机译:动态参数敏感性分析在识别流域污染物来源中的应用

获取原文
获取原文并翻译 | 示例

摘要

Lakes of the Fulton Creek watershed in Northern Saskatchewan, Canada, possess constituents associated with uranium mining. Although mining activity ceased over 24 years ago and site decommissioning was largely completed in 1985, the discharge from this former tailings management watershed continues to have elevated levels of three specific constituents, namely dissolved radium-226, selenium and uranium, as well as total dissolved solids (TDS). The objective of the current study was to identify and rank the sources of constituents in the watershed. Constituent dispersion modelling was carried out employing a proprietary computer code called LAKEVIEW (developed by SENES Consultants Limited). Using the Metropolis-Hastings algorithm of a Markov chain computational procedure, parameter calibration was performed at two locations in the watershed with 25 years of more or less regular water quality and occasional sediment monitoring data. The calibrated model captured the time dependent trends for all variables. Employing the Metropolis-Hastings parameter sampler, dynamic parametric (source) sensitivity analysis was carried out for a 300-year period. The sensitivity responses showed strong temporal variability. Therefore, the normalized gradient sensitivity values were integrated and averaged over time for use as the measure of constituent source loads. Sediments in two lakes were shown to be both the current and future principal sources of all constituents. An adjacent surface tailings area was identified as a relatively minor contributor of all constituents but uranium.
机译:加拿大萨斯喀彻温省北部的富尔顿溪流域的湖泊拥有与铀矿开采有关的成分。尽管采矿活动在24年前就已停止,并且场地退役在1985年已基本完成,但该前尾矿管理流域的排放物仍继续升高三种特定成分的水平,即溶解的226镭,硒和铀,以及全部溶解固体(TDS)。当前研究的目的是识别和排序流域中成分的来源。使用称为LAKEVIEW的专有计算机代码(由SENES Consultants Limited开发)进行成分分散建模。使用马尔可夫链计算程序的Metropolis-Hastings算法,在流域中的两个位置进行了参数校准,这些位置具有25年左右的常规水质或偶尔的沉积物监测数据。校准的模型捕获了所有变量随时间变化的趋势。使用Metropolis-Hastings参数采样器,进行了3​​00年的动态参数(源)敏感性分析。敏感性反应表现出强烈的时间变异性。因此,对归一化的梯度灵敏度值进行积分并随时间平均,以用作组成源负载的度量。事实表明,两个湖泊中的沉积物是当前和未来所有成分的主要来源。邻近的地表尾矿区被确定为除铀以外所有成分的相对较小的贡献者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号