首页> 外文会议>WALCOM: algorithms and computation >Flat-Foldability for 1 × n Maps with Square/Diagonal Grid Patterns
【24h】

Flat-Foldability for 1 × n Maps with Square/Diagonal Grid Patterns

机译:具有正方形/对角网格图案的1×n映射的可折叠性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose three conclusions for 1 × n maps with square/diagonal grid patterns. First, for a 1 × n map consisting of all the vertical creases and all the diagonal creases as well as a mountain-valley assignment, if it obeys the local flat-foldability, then it can always be globally flat-folded and one of its flat-folded state can be reached in O(n) time. Second, for a 1 × n map consisting of only square/diagonal grid pattern, it also can always be globally flat-folded and one of its flat-foldable state can be reached in O(n) time. We give theoretical proofs for both of them and propose corresponding algorithms. Then, we prove the NP-hardness of the problem of determining the global flat-foldability for a 1 × n map consisting of a square/diagonal grid pattern and a specific mountain-valley assignment. Also, we show that given an order of the faces for an m × n map with all the vertical creases and all the diagonal creases assigned to be mountains or valleys, we can determine its validity in O(mn) time.
机译:在本文中,我们对具有正方形/对角网格图案的1×n映射提出了三个结论。首先,对于一个由所有垂直折痕和所有对角折痕以及一个山谷赋值组成的1×n贴图,如果它服从局部平折性,则它始终可以整体平折,并且其中之一折叠状态可以在O(n)时间内达到。其次,对于仅由正方形/对角网格图案组成的1×n映射,它也可以始终全局折叠,并且可以在O(n)时间内达到其折叠状态之一。我们为两者提供了理论证明,并提出了相应的算法。然后,我们证明了确定由正方形/对角网格模式和特定的山-谷分配组成的1×n映射的全局平面可折叠性问题的NP硬度。同样,我们表明,给定一个m×n映射的面部顺序,所有垂直折痕和所有对角折痕均被指定为山脉或山谷,我们可以确定其在O(mn)时间内的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号