首页> 外文会议>WALCOM: algorithms and computation. >Calculating Average Joint Hamming Weight for Minimal Weight Conversion of d Integers
【24h】

Calculating Average Joint Hamming Weight for Minimal Weight Conversion of d Integers

机译:计算平均联合汉明重量以最小化d整数的重量转换

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an algorithm to calculate the efficiency of number representations in elliptic curve cryptography, average joint Hamming weight. The method uses Markov chains generated from a minimal weight conversion algorithm of d integers using the minimal weight conversion. With redundant representations using digit sets like {0, ±1}, it is possible to reduce computation time of the cryptosystem. Although larger digit sets make the computation time shorter, it requires longer preprocessing time. Therefore, the average joint Hamming weight is useful to evaluate digit sets. The Markov chains to find the average joint Hamming weight are derived automatically from the conversions. However, the number of states in these Markov chains is generally infinite. In [8], we propose an algorithm to reduce the number of states, but it is still unclear which representations the method can be applied for. In this paper, the finiteness of Markov chain with the existence of a stationary distribution is proven in a class of representation whose digit set D_s be a finite set such that there exists a natural number A where D_s (⊂) {0, ±1,…, ±Λ} and {0, ±1, ±Λ} (⊂) D_s. The class covers most of the representation practically used in elliptic curve cryptography such as the representation which digit set are {0, ±1} and {0, ±1,±3}.
机译:在本文中,我们提出了一种算法来计算椭圆曲线密码中数字表示的效率,平均联合汉明权重。该方法使用从使用最小权重转换的d个整数的最小权重转换算法生成的马尔可夫链。使用使用{0,±1}之类的数字集的冗余表示形式,可以减少密码系统的计算时间。尽管较大的数字集会使计算时间缩短,但需要更长的预处理时间。因此,平均汉明码联合权重对于评估数字集很有用。可以从转换中自动得出用于查找平均联合汉明重量的马尔可夫链。但是,这些马尔可夫链中的状态数通常是无限的。在[8]中,我们提出了一种减少状态数的算法,但仍不清楚该方法可用于哪种表示。在本文中,在一类表示形式中证明了马尔可夫链具有平稳分布的有限性,该表示形式的数字集D_s是一个有限集,使得存在自然数A,其中D_s(⊂){0,±1, …,±Λ}和{0,±1,±Λ}(⊂)D_s。该类涵盖了椭圆曲线密码学中实际使用的大多数表示形式,例如数字集为{0,±1}和{0,±1,±3}的表示形式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号