首页> 外文会议>VLSI Circuits and Systems II pt.2 >Modeling of frequency agile devices: Development of PKI neuromodeling library based on hierarchical network structure
【24h】

Modeling of frequency agile devices: Development of PKI neuromodeling library based on hierarchical network structure

机译:频率捷变设备建模:基于分层网络结构的PKI神经建模库的开发

获取原文
获取原文并翻译 | 示例

摘要

Recently, neuromodeling methods of microwave devices have been developed. These methods are suitable for the model generation of novel devices. They allow fast and accurate simulations and optimizations. However, the development of libraries makes these methods to be a formidable task, since they require massive input-output data provided by an electromagnetic simulator or measurements and repeated artificial neural network (ANN) training. This paper presents a strategy reducing the cost of library development with the advantages of the neuromodeling methods: high accuracy, large range of geometrical and material parameters and reduced CPU time. The library models are developed from a set of base prior knowledge input (PKI) models, which take into account the characteristics common to all the models in the library, and high-level ANNs which give the library model outputs from base PKI models. This technique is illustrated for a microwave multiconductor tunable phase shifter using anisotropic substrates. Closed-form relationships have been developed and are presented in this paper. The results show good agreement with the expected ones.
机译:最近,已经开发了微波设备的神经建模方法。这些方法适用于新型设备的模型生成。它们允许快速而准确的仿真和优化。但是,库的开发使这些方法成为一项艰巨的任务,因为它们需要电磁模拟器提供的大量输入/输出数据,或者需要进行测量以及重复的人工神经网络(ANN)训练。本文提出了一种利用神经建模方法的优势来降低库开发成本的策略:高精度,大范围的几何和材料参数以及减少的CPU时间。库模型是从一组基础先验知识输入(PKI)模型开发的,这些模型考虑了库中所有模型的共同特征,以及高级ANN,这些高级ANN从基础PKI模型提供了库模型输出。对于使用各向异性衬底的微波多导体可调移相器,说明了该技术。已经开发了封闭形式的关系,并在本文中进行了介绍。结果表明与预期结果吻合良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号