首页> 外文会议>Visualization, Image-Guided Procedures, and Display pt.1; Progress in Biomedical Optics and Imaging; vol.6,no.21 >Automated Segmentation of the Lungs from High Resolution CT Images for Quantitative Study of Chronic Obstructive Pulmonary Diseases
【24h】

Automated Segmentation of the Lungs from High Resolution CT Images for Quantitative Study of Chronic Obstructive Pulmonary Diseases

机译:高分辨率CT图像对肺的自动分割,用于慢性阻塞性肺疾病的定量研究

获取原文
获取原文并翻译 | 示例

摘要

Chronic obstructive pulmonary diseases (COPD) are debilitating conditions of the lung and are the fourth leading cause of death in the United States. Early diagnosis is critical for timely intervention and effective treatment. The ability to quantify particular imaging features of specific pathology and accurately assess progression or response to treatment with current imaging tools is relatively poor. The goal of this project was to develop automated segmentation techniques that would be clinically useful as computer assisted diagnostic tools for COPD. The lungs were segmented using an optimized segmentation threshold and the trachea was segmented using a fixed threshold characteristic of air. The segmented images were smoothed by a morphological close operation using spherical elements of different sizes. The results were compared to other segmentation approaches using an optimized threshold to segment the trachea. Comparison of the segmentation results from 10 datasets showed that the method of trachea segmentation using a fixed air threshold followed by morphological closing with spherical element of size 23x23x5 yielded the best results. Inclusion of greater number of pulmonary vessels in the lung volume is important for the development of computer assisted diagnostic tools because the physiological changes of COPD can result in quantifiable anatomic changes in pulmonary vessels. Using a fixed threshold to segment the trachea removed airways from the lungs to a better extent as compared to using an optimized threshold. Preliminary measurements gathered from patient's CT scans suggest that segmented images can be used for accurate analysis of total lung volume and volumes of regional lung parenchyma. Additionally, reproducible segmentation allows for quantification of specific pathologic features, such as lower intensity pixels, which are characteristic of abnormal air spaces in diseases like emphysema.
机译:慢性阻塞性肺疾病(COPD)是导致肺部衰弱的疾病,并且是美国第四大死亡原因。早期诊断对于及时干预和有效治疗至关重要。量化特定病理学的特定成像特征并准确评估当前成像工具对治疗进展或反应的能力相对较差。该项目的目的是开发自动分割技术,该技术在临床上可作为COPD的计算机辅助诊断工具。使用优化的分割阈值对肺进行分割,并使用固定的空气阈值特征对气管进行分割。分割的图像通过使用不同大小的球形元素的形态封闭操作进行平滑处理。使用优化的阈值对气管进行分割,将结果与其他分割方法进行了比较。比较来自10个数据集的分割结果,结果表明,使用固定空气阈值进行气管分割,然后使用尺寸为23x23x5的球形元素进行形态学封闭的方法可获得最佳效果。在肺部容积中包含更多数量的肺血管对于计算机辅助诊断工具的开发非常重要,因为COPD的生理变化可导致肺血管的可量化解剖学变化。与使用优化阈值相比,使用固定阈值分割从肺中去除气管的气道更好。从患者的CT扫描中收集到的初步测量结果表明,分割的图像可用于准确分析总肺体积和局部肺实质的体积。另外,可再现的分割允许量化特定病理特征,例如较低强度的像素,这些特征是诸如肺气肿的疾病中异常气隙的特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号