【24h】

Hysteresis-Based Selective Gaussian-Mixture Model for Real-Time Background Update

机译:基于磁滞的选择性高斯混合模型用于实时背景更新

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel Mixture of Gaussian (MOG)-based real-time background update technique. The proposed technique consists of a new selective matching scheme based on the combined approaches of component ordering and winner-takes-all. This matching scheme not only selects the most probable component for the first matching with new pixel data, greatly improving performance, but also simplifies pixel classification and component replacement in case of no match. Further performance improvement achieved by using a new simple and functional component variance adaptation formula. Also in this technique, the proposed new hysteresis-based component matching and temporal motion history schemes improve segmentation quality. Component hysteresis matching improves detected foreground object blobs by reducing the amount of cracks and added shadows, while motion history preserves the integrity of moving objects boundaries, both with minimum computational overhead. The proposed background update technique implicitly handles both gradual illumination change and temporal clutter problems. The problem of shadows and ghosts is partially addressed by the proposed hysteresis-based matching scheme. The problem of persistent sudden illumination changes and camera movements are addressed at frame level depending on the percentage of pixels classified as foreground. We implemented three different state-of-the-art background update techniques and compared their segmentation quality and computational performance with those of the proposed technique. Experimental results on reference outdoor sequences and real traffic surveillance streams show that the proposed technique improved segmentation accuracy for extracting moving objects of interest compared to other reference techniques.
机译:我们提出了一种新颖的基于高斯(MOG)的实时背景更新技术的混合物。所提出的技术包括一种新的选择性匹配方案,该方案基于组件订购和赢家通吃的组合方法。这种匹配方案不仅为新像素数据的首次匹配选择最有可能的成分,从而大大提高了性能,而且在不匹配的情况下简化了像素分类和成分替换。通过使用新的简单和功能组件差异适应公式,可以进一步提高性能。同样在该技术中,提出的新的基于滞后的分量匹配和时间运动历史方案提高了分割质量。组件滞回匹配通过减少裂缝和增加的阴影数量来改善检测到的前景对象斑点,而运动历史记录则以最小的计算开销保持了运动对象边界的完整性。所提出的背景更新技术隐式处理了逐渐的光照变化和时间混乱问题。所提出的基于磁滞的匹配方案可部分解决阴影和重影问题。持续的突然照明变化和相机移动的问题在帧级别得到解决,具体取决于分类为前景的像素百分比。我们实施了三种不同的最新背景更新技术,并将其分割质量和计算性能与所提出的技术进行了比较。在参考室外序列和实际交通监控流上的实验结果表明,与其他参考技术相比,该技术提高了提取感兴趣运动对象的分割精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号