首页> 外文会议>Visual Communications and Image Processing 2005 pt.4 >An Edge-preserved Image Denoising Technique based on Iterated Function Systems
【24h】

An Edge-preserved Image Denoising Technique based on Iterated Function Systems

机译:基于迭代函数系统的边缘保留图像降噪技术

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new fractal-based image denoising method is proposed which can reserve the edges and remove the blocky artifacts in a denoised image. Our proposed method employs the decoupling property of the fractal code instead of the conventional fractal coding using the contrast scaling and offset parameters. This decoupling property makes it possible to denoise images more effectively and flexibly. In order to improve the visual quality of a denoised image, a range-block partitioning scheme is used to generate a set of overlapping sub-images, and each of the sub-images is represented by range-block mean values and contrast scaling factors to remove the noise. These sub-images are then averaged to produce an optimal denoised image. Experimental results show that our proposed method can achieve, on average, 4.24dB and 1.09dB increase in PSNR in the low-noise (σ < 20) and the high-noise (σ ≥ 20) conditions, respectively, when compared to an exisiting fractal-based denoising algorithm.
机译:本文提出了一种新的基于分形的图像去噪方法,该方法可以保留边缘并去除去噪图像中的块状伪影。我们提出的方法利用分形码的解耦特性,而不是使用对比度缩放和偏移参数的常规分形编码。这种去耦特性使得可以更有效,更灵活地对图像进行去噪。为了提高去噪图像的视觉质量,使用范围块分割方案来生成一组重叠的子图像,并且每个子图像都由范围块平均值和对比度缩放因子来表示。消除噪音。然后将这些子图像平均以产生最佳去噪图像。实验结果表明,与现有的方法相比,我们提出的方法在低噪声(σ<20)和高噪声(σ≥20)的条件下平均可以分别提高PSNR 4.24dB和1.09dB。基于分形的去噪算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号