首页> 外文会议>Visual Communications and Image Processing 2005 pt.1 >Wavelet-Based Bayesian Denoising Using Bernoulli-Gaussian Mixture Model
【24h】

Wavelet-Based Bayesian Denoising Using Bernoulli-Gaussian Mixture Model

机译:基于伯努利-高斯混合模型的基于小波的贝叶斯去噪

获取原文
获取原文并翻译 | 示例

摘要

In general, wavelet coefficients are composed of a few large coefficients and a lot of small ones. Therefore, each wavelet coefficient is efficiently modeled as a random variable of a Bernoulli-Gaussian mixture distribution with unknown parameters. The Bernoulli-Gaussian mixture is composed of the multiplication of the Bernoulli random variable and the Gaussian mixture random variable. In this paper, we propose a denoising algorithm using the Bernoulli-Gaussian mixture model based on sparse characteristics of the wavelet coefficient. The denoising is performed with Bayesian estimation. We present an effective denoising method through simplified parameter estimation for the Bernoulli random variable using a local expected square error. Simulation results showed that our method outperformed the states of the art denoising methods.
机译:通常,小波系数由几个大系数和很多小系数组成。因此,有效地将每个小波系数建模为参数未知的伯努利-高斯混合分布的随机变量。伯努利-高斯混合由伯努利随机变量和高斯混合随机变量的乘积组成。在本文中,我们基于小波系数的稀疏特征,提出了一种使用伯努利-高斯混合模型的去噪算法。用贝叶斯估计执行去噪。通过使用局部期望平方误差的伯努利随机变量的简化参数估计,我们提出了一种有效的去噪方法。仿真结果表明,我们的方法优于现有的去噪方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号