首页> 外文会议>Videometrics, range imaging, and applications XII; and Automated visual inspection >Inspecting rapidly moving surfaces for small defects using CNN cameras
【24h】

Inspecting rapidly moving surfaces for small defects using CNN cameras

机译:使用CNN相机检查快速移动的表面是否有小缺陷

获取原文
获取原文并翻译 | 示例

摘要

A continuous increase in production speed and manufacturing precision raises a demand for the automated detection of small image features on rapidly moving surfaces. An example are wire drawing processes where kilometers of cylindrical metal surfaces moving with 10 m/s have to be inspected for defects such as scratches, dents, grooves, or chatter marks with a lateral size of 100 μm in real time. Up to now, complex eddy current systems are used for quality control instead of line cameras, because the ratio between lateral feature size and surface speed is limited by the data transport between camera and computer. This bottleneck is avoided by "cellular neural network" (CNN) cameras which enable image processing directly on the camera chip. This article reports results achieved with a demonstrator based on this novel analogue camera - computer system. The results show that computational speed and accuracy of the analogue computer system are sufficient to detect and discriminate the different types of defects. Area images with 176 × 144 pixels are acquired and evaluated in real time with frame rates of 4 to 10 kHz - depending on the number of defects to be detected. These frame rates correspond to equivalent line rates on line cameras between 360 and 880 kHz, a number far beyond the available features. Using the relation between lateral feature size and surface speed as a figure of merit, the CNN based system outperforms conventional image processing systems by an order of magnitude.
机译:生产速度和制造精度的不断提高提出了对在快速移动的表面上自动检测小图像特征的需求。一个示例是拉丝工艺,其中必须实时检查数千米的以10 m / s移动的圆柱形金属表面是否有横向尺寸为100μm的划痕,凹痕,凹槽或颤动痕迹等缺陷。到目前为止,由于横向特征尺寸与表面速度之间的比率受到照相机与计算机之间数据传输的限制,因此,复杂的涡流系统已用于质量控制而非线照相机。通过“细胞神经网络”(CNN)摄像机可以避免此瓶颈,该摄像机可以直接在摄像机芯片上进行图像处理。本文报告了基于这种新颖的模拟相机-计算机系统的演示器所获得的结果。结果表明,模拟计算机系统的计算速度和准确性足以检测和区分不同类型的缺陷。根据要检测的缺陷数量,以4至10 kHz的帧频实时采集和评估176×144像素的区域图像。这些帧速率对应于360到880 kHz之间的线摄像机的等效线速率,这个数字远远超出了可用功能。使用横向特征尺寸和表面速度之间的关系作为品质因数,基于CNN的系统比传统的图像处理系统好一个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号