首页> 外文会议>Unconventional imaging, wavefront sensing, and adaptive coded aperture imaging and non-imaging sensor systems >Ultrasound-modulated fluorescent contrast agent for optical imaging through turbid media
【24h】

Ultrasound-modulated fluorescent contrast agent for optical imaging through turbid media

机译:超声调制荧光造影剂,用于通过混浊介质进行光学成像

获取原文
获取原文并翻译 | 示例

摘要

Optical imaging in a highly scattering medium is effective only at very shallow depths which limits its use as a diagnostic tool in biomedical imaging. By combining optical and acoustic modalities, high-contrast, physiologicallyrelevant optical information at higher spatial resolutions can be achieved. Hybrid imaging modalities such as acoustooptic and photoacoustic imaging improve resolution over conventional optical imaging, but tissue scattering results in poor signal-to-background ratios especially in deeper tissues. To overcome these challenges, we have developed a novel microbubble (MB) contrast agent surface-loaded with a self-quenching fluorophore. In response to ultrasound, the MB expands and contracts, generating changes in fluorophore surface density. The changes in physical separation between fluorophores modulate the quenching efficiency and produce a fluorescence intensity modulation. To our knowledge, this is the first experimental demonstration of ultrasound modulation of fluorescence using a self-quenching MB scheme. The modulation is spatially localized to the ultrasound focal zone where the pressure is greatest and the largest MB oscillations are induced. The modulated signal can be extracted from a large constant light background, increasing detection sensitivity. This technique can enable sensitive optical imaging with ultrasound-scale sub-millimeter spatial resolution, overcoming significant challenges of optical imaging in deep tissue. The contrast agent MBs were prepared with a shell of phospholipid and lipophilic self-quenching fluorophore. MB ultrasound response was studied in a custom setup which monitored fluorescence emitted from an insonified sample. Fluorescence signals displayed clearly modulated intensity and the fast Fourier transform (FFT) showed a strong component at the ultrasound driving frequency.
机译:高散射介质中的光学成像仅在非常浅的深度才有效,这限制了它在生物医学成像中作为诊断工具的用途。通过组合光学和声学模态,可以在较高的空间分辨率下获得高对比度,生理相关的光学信息。诸如声光成像和光声成像之类的混合成像方式比传统的光学成像可提高分辨率,但是组织散射会导致较差的信噪比,尤其是在较深的组织中。为了克服这些挑战,我们开发了一种新型的微泡(MB)造影剂,其表面负载有自猝灭荧光团。响应超声,MB会膨胀和收缩,从而导致荧光团表面密度发生变化。荧光团之间物理间隔的变化调节猝灭效率并产生荧光强度调节。据我们所知,这是使用自猝灭MB方案对荧光进行超声调制的第一个实验演示。调制在空间上局限于超声聚焦区域,在超声聚焦区域,压力最大,并引起最大的MB振荡。可以从较大的恒定光背景中提取调制信号,从而提高检测灵敏度。该技术可以实现具有超音波级亚毫米空间分辨率的灵敏光学成像,从而克服了深部组织中光学成像的重大挑战。用磷脂和亲脂性自猝灭荧光团的壳制备对比剂MBs。 MB超声响应是在定制设置中研究的,该设置可监视从声化样品发出的荧光。荧光信号显示出明显的调制强度,而快速傅立叶变换(FFT)在超声驱动频率下显示出很强的分量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号