首页> 外文会议>Uncertainty reasoning for the semantic web III >Semantic Knowledge Discovery and Data-Driven Logical Reasoning from Heterogeneous Data Sources
【24h】

Semantic Knowledge Discovery and Data-Driven Logical Reasoning from Heterogeneous Data Sources

机译:异构数据源的语义知识发现和数据驱动的逻辑推理

获取原文
获取原文并翻译 | 示例

摘要

Available domain ontologies are increasing over the time. However there is still a huge amount of data stored and managed with RDBMS. This complementarity could be exploited both for discovering knowledge patterns that are not formalized within the ontology but that are learnable from the data, and for enhancing reasoning on ontologies by relying on the combination of formal domain models and the evidence coming from data. We propose a method for learning association rules from both ontologies and RDBMS in an integrated way. The extracted patterns can be used for enriching the available knowledge (in both format) and for refining existing ontologies. We also propose a method for automated reasoning on grounded knowledge bases (i.e. knowledge bases linked to RDBMS data) based on the standard Tableaux algorithm which combines logical reasoning and statistical inference thus making sense of the heterogeneous data sources.
机译:随着时间的流逝,可用的领域本体正在增加。但是,仍然有大量的数据通过RDBMS存储和管理。可以利用这种互补性来发现不是在本体中正式化但可以从数据中学习的知识模式,以及通过依靠形式域模型和数据证据的结合来增强对本体的推理。我们提出了一种以集成方式从本体和RDBMS中学习关联规则的方法。提取的模式可用于丰富可用的知识(两种格式)和完善现有的本体。我们还提出了一种基于标准Tableaux算法的,基于基础知识的知识库(即与RDBMS数据链接的知识库)的自动推理方法,该算法结合了逻辑推理和统计推断功能,因此可以理解异构数据源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号