首页> 外文会议>Typed lambda calculi and applications >Orthogonality and Boolean Algebras for Deduction Modulo
【24h】

Orthogonality and Boolean Algebras for Deduction Modulo

机译:演绎模的正交和布尔代数

获取原文
获取原文并翻译 | 示例

摘要

Originating from automated theorem proving, deduction modulo removes computational arguments from proofs by interleaving rewriting with the deduction process. From a proof-theoretic point of view, deduction modulo defines a generic notion of cut that applies to any first-order theory presented as a rewrite system. In such a setting, one can prove cut-elimination theorems that apply to many theories, provided they verify some generic criterion. Pre-Hey ting algebras are a generalization of Heyting algebras which are used by Dowek to provide a semantic intuitionistic criterion called superconsistency for generic cut-elimination. This paper uses pre-Boolean algebras (generalizing Boolean algebras) and biorthogonality to prove a generic cut-elimination theorem for the classical sequent calculus modulo. It gives this way a novel application of reducibility candidates techniques, avoiding the use of proof-terms and simplifying the arguments.
机译:推导模源自自动定理证明,通过将推导过程与重写交织,从而从证明中去除了计算论点。从证明理论的角度来看,演绎模定义了割的通用概念,该概念适用于表示为重写系统的任何一阶理论。在这种情况下,只要证明某种通用准则,就可以证明适用于许多理论的割消定理。前Hey ting代数是Heyting代数的概括,Dowek使用它来提供语义直觉的准则,称为通用一致性消除超一致性。本文使用布尔前代数(广义布尔代数)和双正交性证明了经典相继演算模的通用割除定理。它为这种方式提供了可简化性候选技术的新颖应用,避免了使用证明项并简化了论点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号