首页> 外文会议>Twentieth International Vlsi Multilevel Interconnection Conference (VMIC); Sep 23-25, 2003; Marina del Rey, California >A STOCHASTIC ALGORITHM FOR 3D MAXWELL SOLUTION WITHIN OPTICAL ON-CHIP IC INTERCONNECTS: MATERIALLY HOMOGENEOUS, SCALAR WAVE-EQUATION BENCHMARKS
【24h】

A STOCHASTIC ALGORITHM FOR 3D MAXWELL SOLUTION WITHIN OPTICAL ON-CHIP IC INTERCONNECTS: MATERIALLY HOMOGENEOUS, SCALAR WAVE-EQUATION BENCHMARKS

机译:光学片上IC互连内的3D Maxwell解决方案的随机算法:材料均质,标量波方程式基准

获取原文
获取原文并翻译 | 示例

摘要

Understanding and predicting the multi-GHz behavior of IC interconnects is crucial towards meeting objectives of the semiconductor-design industry in the present decade. Essentially, we need solve Maxwell's equations. There are two ways in which this can be done: (ⅰ) one-step, direct solution of the underlying field equations; ( ⅱ) two-step, lumped-element parasitic extraction followed by solution of the resulting circuit equations. We will presume that "one-step" Maxwell solution has been selected above. It is direct and efficient solution of Maxwell's equations―for future application in optical on-chip IC-interconnect CAD―that we consider our primary motivating factor. Traditional numerical methods for solving electromagnetic problems, unfortunately, require a numerical discretization mesh, consuming large amounts of computer memory. In particular, mesh size and resultant difficulty of solution become somewhat unmanageable in massively coupled, geometrically complicated 3D problems. The stochastic algorithm that we present here requires no such mesh; in essence, it executes a Monte Carlo integration over a meshless problem domain. We have previously reported new Impulse-Response (IR) moment-extraction algorithms for RC and RLC IC-interconnect circuit networks. These algorithms implemented diagrammatic expansion of a Laplace-transform perturbation series, inspired by the work of Feynman in theoretical physics. The proven advantages of diagrammatic expansion are contained within this approach: no numerical mesh, efficient in massively coupled, high-dimensionality problems; "dial-in" accuracy; fully parallel for computational speed up.
机译:了解和预测IC互连的多GHz行为对于实现当前十年半导体设计行业的目标至关重要。本质上,我们需要求解麦克斯韦方程。有两种方法可以做到:(ⅰ)一步一步地直接求解基础场方程; (ⅱ)两步集总元件寄生提取,然后求解所得电路方程。我们将假定上面已经选择了“一步式”麦克斯韦解决方案。麦克斯韦方程组的直接有效的解决方案是我们考虑我们的主要动机,这是麦克斯韦方程组的未来有效的解决方案,以备将来在光学片上IC互连CAD中应用。不幸的是,解决电磁问题的传统数值方法需要数值离散网格,从而消耗大量的计算机内存。特别是,在大规模耦合,几何复杂的3D问题中,网格大小和由此产生的求解难度变得有些难以控制。我们在这里提出的随机算法不需要这种网格。本质上,它在无网格问题域上执行蒙特卡洛积分。先前我们已经报道了用于RC和RLC IC互连电路网络的新的脉冲响应(IR)矩提取算法。这些算法实现了Laplace变换扰动级数的图解扩展,这是受到费曼理论物理学工作的启发。这种方法包含了已证明的图解扩展优势:没有数值网格,在大规模耦合的高维问题中有效; “拨入”精度;完全并行以提高计算速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号