...
首页> 外文期刊>Engineering with Computers >Homogeneous stress-strain states computed by 3D-stress algorithms of FE-codes: application to material parameter identification
【24h】

Homogeneous stress-strain states computed by 3D-stress algorithms of FE-codes: application to material parameter identification

机译:FE代码的3D应力算法计算的均匀应力-应变状态:在材料参数识别中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

In view of code verification of finite element implementations and for material parameter identification purposes it is of interest to make use of stress algorithms developed for three-dimensional finite element computations. In the case of homogeneous deformations various boundary-conditions for given displacements or stresses are possible and define a sub-problem of three-dimensional stress-strain states, which are either one-, two- or three-dimensional. Examples are uniaxial tension/compression, plane stress conditions or biaxial tensile problems. Caused by the fact that the stress algorithms are strain-driven, the constraints of zero stresses in a specific direction lead for elastic and inelastic constitutive models to a particular system of differential-algebraic equations. How to treat such stress algorithms and how to solve the resulting system of differential-algebraic equations, which are developed for finite element programs, for specific stress and displacement boundary conditions is discussed in this article. Additionally, it is worked out that the consistent tangent operator is required in the same manner as in 3D-FE computations. The second topic treats the extension of the entire procedure for material parameter identification procedure applied to test data for different materials such as steel, rubber material and powder. In this respect, uniaxial tensile, biaxial tensile tests, and laterally constrained loading paths are exemplarily investigated. These investigations and the proposed procedure are applied for small and finite strain problems. In this investigation measure of the quality of identification is discussed as well.
机译:鉴于有限元实现的代码验证以及出于材料参数识别的目的,利用为三维有限元计算开发的应力算法是很有意义的。在均匀变形的情况下,给定位移或应力的各种边界条件都是可能的,并定义了三维应力-应变状态的子问题,该子应力是一维,二维或三维的。例如单轴拉伸/压缩,平面应力条件或双轴拉伸问题。由于应力算法是由应变驱动的,因此在特定方向上零应力的约束导致弹性本构模型和非弹性本构模型导致特定的微分代数方程组。本文讨论了如何处理这样的应力算法以及如何求解为有限元程序开发的,针对特定应力和位移边界条件的微分-代数方程组。此外,已确定需要以与3D-FE计算相同的方式来要求一致的切线算符。第二个主题是材料参数识别过程的整个过程的扩展,该过程适用于不同材料(例如钢,橡胶材料和粉末)的测试数据。在这方面,示例性地研究了单轴拉伸试验,双轴拉伸试验和横向约束的加载路径。这些研究和提出的程序适用于小而有限的应变问题。在这项调查中,还讨论了识别质量的措施。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号