【24h】

CSBD: A Nonlinear Clustering Method Based on Cluster Shrinking and Border Detection

机译:CSBD:一种基于聚类收缩和边界检测的非线性聚类方法

获取原文
获取原文并翻译 | 示例

摘要

Nonlinear clustering has attracted an increasing amount of attention recently. In this paper, we propose a new nonlinear clustering method based on Cluster Shrinking and Border Detection (CSBD). Unlike most existing clustering method, the CSBD method focuses on every data point rather then the cluster centers. A novel idea, namely Cluster Shrinking, is designed to transform the original nonlinear datasets into several hyperspheres, which makes clustering work much easier. Besides, we also introduce a simple but effective Border Detection method based on histogram analysis to automatically determine the threshold parameter in Cluster Shrinking phase. Extensive experiments have been conducted to demonstrate the effectiveness of CSBD in both synthetic and real-world datasets.
机译:非线性聚类最近引起了越来越多的关注。在本文中,我们提出了一种新的基于聚类收缩和边界检测(CSBD)的非线性聚类方法。与大多数现有的群集方法不同,CSBD方法专注于每个数据点,而不是群集中心。设计了一种新颖的想法,即“聚类收缩”,可以将原始的非线性数据集转换为多个超球体,从而使聚类工作变得更加容易。此外,我们还介绍了一种基于直方图分析的简单有效的边界检测方法,可以自动确定簇收缩阶段的阈值参数。已经进行了广泛的实验以证明CSBD在合成数据集和实际数据集中均有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号