【24h】

URL Based Gateway Side Phishing Detection Method

机译:基于URL的网关侧网络钓鱼检测方法

获取原文
获取原文并翻译 | 示例

摘要

Phishing attack has become the most dangerous form of fraud to hit online and mobile businesses. In this paper, we reveal some new aspects of the common features that appear in the phishing URLs, and introduce a statistical machine learning classifier to detect the phishing sites which relies on these selected features. Unlike previous studies, we do not utilize a single model for different regions since the result of our analysis shows that the features in different phishing domains have mismatched distributions. As it is impossible for us to recollect enough data and rebuild the models, we adjust the existing model by the transfer learning algorithm to solve these problems. A number of comprehensive experiments show that our proposed method achieves more than 93% accuracy over a balanced dataset and less than 1% error rates in the simulated real phishing scene. Moreover, the well performance in the target domain demonstrates the use of transfer learning algorithm in the anti-phishing scenario is feasible.
机译:网络钓鱼攻击已成为打击在线和移动企业的最危险欺诈手段。在本文中,我们揭示了网络钓鱼URL中常见功能的一些新方面,并介绍了一种统计机器学习分类器来检测依赖于这些选定功能的网络钓鱼站点。与以前的研究不同,我们没有对不同区域使用单一模型,因为我们的分析结果表明,不同网络钓鱼域中的特征具有不匹配的分布。由于我们无法收集足够的数据并重建模型,因此我们通过转移学习算法调整现有模型以解决这些问题。大量综合实验表明,我们提出的方法在平衡的数据集上可达到93%以上的精度,在模拟的实际网络钓鱼场景中的错误率低于1%。此外,目标域的良好性能证明了在反网络钓鱼的情况下使用转移学习算法是可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号