首页> 外文会议>Trenss and applications in Knowledge discovery and data mining >Call Attention to Rumors: Deep Attention Based Recurrent Neural Networks for Early Rumor Detection
【24h】

Call Attention to Rumors: Deep Attention Based Recurrent Neural Networks for Early Rumor Detection

机译:呼叫谣言:基于深度注意力的递归神经网络用于早期谣言检测

获取原文
获取原文并翻译 | 示例

摘要

The proliferation of social media in communication and information dissemination has made it an ideal platform for spreading rumors. Automatically debunking rumors at their stage of diffusion is known as early rumor detection, which refers to dealing with sequential posts regarding disputed factual claims with certain variations and highly textual duplication over time. Thus, identifying trending rumors demands an efficient yet flexible model that is able to capture long-range dependencies among postings and produce distinct representations for the accurate early detection. However, it is a challenging task to apply conventional classification algorithms to rumor detection in ear-liness since they rely on hand-crafted features which require intensive manual efforts in the case of large amount of posts. This paper presents a deep attention model based on recurrent neural networks (RNNs) to selectively learn temporal representations of sequential posts for rumor identification. The proposed model delves soft-attention into the recurrence to simultaneously pool out distinct features with particular focus and produce hidden representations that capture contextual variations of relevant posts over time. Extensive experiments on real datasets collected from social media websites demonstrate that the deep attention based RNN model outperforms state-of-the-art baselines by detecting rumors more quickly and accurately than competitors.
机译:社交媒体在交流和信息传播中的普及使之成为传播谣言的理想平台。在传播阶段自动对谣言进行揭穿被称为早期谣言检测,这是指处理有关有争议的事实主张的顺序帖子,这些声明随着时间的流逝具有某些变化和高度文本重复。因此,识别趋势谣言需要一个有效而灵活的模型,该模型能够捕获发布之间的长期依赖性,并为准确的早期检测生成不同的表示形式。然而,将常规分类算法应用于早期的谣言检测是一项艰巨的任务,因为它们依赖于手工制作的功能,在大量帖子的情况下需要大量的人工努力。本文提出了一种基于递归神经网络(RNN)的深度关注模型,以选择性地学习顺序帖子的时间表示形式以进行谣言识别。所提出的模型将注意力集中在递归上,以同时集中具有特殊重点的不同特征,并生成隐藏的表示形式,以捕获相关职位随时间变化的情况。从社交媒体网站收集的真实数据集上的大量实验表明,基于深层关注的RNN模型比竞争对手更快速,更准确地检测谣言,从而胜过了最新的基线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号