首页> 外文会议>Tools and algorithms for the construction and analysis of systems >Canonized Rewriting and Ground AC Completion Modulo Shostak Theories
【24h】

Canonized Rewriting and Ground AC Completion Modulo Shostak Theories

机译:规范化重写和地面交流完成模数Shostak理论

获取原文
获取原文并翻译 | 示例

摘要

AC-completion efficiently handles equality modulo associative and commutative function symbols. When the input is ground, the procedure terminates and provides a decision algorithm for the word problem. In this paper, we present a modular extension of ground AC-completion for deciding formulas in the combination of the theory of equality with user-defined AC symbols, uninterpreted symbols and an arbitrary signature disjoint Shostak theory X. Our algorithm, called AC(X), is obtained by augmenting in a modular way ground AC-completion with the canonizer and solver present for the theory X. This integration rests on canonized rewriting, a new relation reminiscent to normalized rewriting, which integrates canonizers in rewriting steps. AC(X) is proved sound, complete and terminating, and is implemented to extend the core of the Alt-Ergo theorem prover.
机译:AC补全可以有效地处理等价的模关联和交换功能符号。当输入接地时,该过程终止,并为单词问题提供决策算法。在本文中,我们提出了地面AC补全的模块化扩展,用于将等式理论与用户定义的AC符号,未解释的符号以及任意签名不相交的Shostak理论X结合起来来确定公式。我们的算法AC(X )是通过以理论X出现的规范化器和求解器以模块化的方式增加地面AC补全而获得的。此集成取决于规范化重写,这是一种与规范化重写相似的新关系,该规范化将规范化器集成在重写步骤中。 AC(X)被证明是健全,完整和可终止的,并且被实现为扩展Alt-Ergo定理证明者的核心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号