首页> 外文会议>Three-dimensional and multidimensional microscopy: image acquisition and processing XX >Comparison of computational methods developed to address depth-variant imaging in fluorescence microscopy
【24h】

Comparison of computational methods developed to address depth-variant imaging in fluorescence microscopy

机译:开发用于解决荧光显微镜中深度变化成像的计算方法的比较

获取原文
获取原文并翻译 | 示例

摘要

In three-dimensional microscopy, the image formation process is inherently depth variant (DV) due to the refractive index mismatch between the imaging layers. In this study, we present a quantitative comparison among different image restoration techniques developed based on a depth-variant (DV) imaging model for fluorescence microscopy. The imaging models employed by these methods approximate DV imaging by either stratifying the object space (analogous to the discrete Fourier transform (DFT) "overlap-add" method) or image space (analogous to the DFT "overlap-save" method). We compare DV implementations based on maximum likelihood (ML) estimation and a previously developed expectation maximization algorithm to a ML conjugate gradient algorithm, using both these stratification approaches in order to assess their impact on the restoration methods. Simulations show that better restoration results are achieved with iterative methods implemented using the overlap-add method than with their implementation using the overlap-save method. However, the overlap-save method makes it possible to implement a non-iterative DV inverse filter that can trade off accuracy of the achieved result for computational speed. Results from a non-iterative regularized inverse filtering approach are also presented.
机译:在三维显微镜中,由于成像层之间的折射率不匹配,因此图像形成过程本质上是深度变化(DV)。在这项研究中,我们提出了基于深度可变(DV)荧光显微镜成像模型开发的不同图像恢复技术之间的定量比较。这些方法采用的成像模型通过将对象空间分层(类似于离散傅里叶变换(DFT)“重叠叠加”方法)或图像空间(类似于DFT“重叠保存”方法)来近似DV成像。我们使用这两种分层方法,将基于最大似然(ML)估计和先前开发的期望最大化算法与ML共轭梯度算法的DV实现进行了比较,以评估它们对恢复方法的影响。仿真表明,与使用重叠保存方法实现的迭代方法相比,使用重叠添加方法实现的迭代方法可获得更好的恢复结果。然而,重叠保存方法使得有可能实现非迭代的DV逆滤波器,该非逆DV逆滤波器可以权衡所获得的结果的准确性以用于计算速度。还介绍了非迭代正则逆滤波方法的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号