首页> 外文会议>Three-Dimensional Image Capture and Applications VII; Electronic Imaging Science and Technology >Internal shape-deformation invariant 3D surface matching using 2D principal component analysis
【24h】

Internal shape-deformation invariant 3D surface matching using 2D principal component analysis

机译:使用2D主成分分析的内部形状变形不变3D表面匹配

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a method that overcomes the problem of internal deformations in three-dimensional (3D) range image identification. Internal deformations can be caused by several factors including stereo camera-pair misalignment, surface irregularities, active vision methods' incompatibilities, image imperfections, and changes in illumination sources. Most 3D surface matching systems suffer from these changes and their performances are significantly degraded unless deformations' effect is compensated. Here, we propose an internal compensation method based on the two-dimensional (2D) principal component analysis (PCA). The depth map of a 3D range image is first thresholded using Otsu's optimal threshold selection criterion to discard the background information. The detected volumetric shape is normalized in the spatial plane and aligned with a reference coordinate system for rotation-, translation- and scaling-invariant classification. The preprocessed range image is then divided into 16x16 sub-blocks, each of which is smoothed to minimize the local variations. The 2DPCA is applied to the resultant range data and the corresponding principal vectors are used as the characteristic features of the object to determine its identity in the database of pre-recorded shapes. The system's performance is tested against the several 3D facial images possessing arbitrary deformation. Experiments have resulted in 92% recognition accuracy for the GavaDB 3D-face database entries and their Gaussian- or Poisson-type noisy versions using the minimum Euclidean-distance classification strategy in an optimally constructed eigen-face feature space.
机译:本文介绍了一种方法,该方法克服了三维(3D)范围图像识别中的内部变形问题。内部变形可能由多种因素引起,包括立体相机对未对准,表面不规则,主动视觉方法的不兼容性,图像缺陷以及照明源的变化。大多数3D表面匹配系统都会遭受这些更改,除非补偿变形的影响,否则它们的性能会大大降低。在此,我们提出一种基于二维(2D)主成分分析(PCA)的内部补偿方法。首先使用Otsu的最佳阈值选择标准对3D距离图像的深度图进行阈值处理,以丢弃背景信息。将检测到的体积形状在空间平面中进行归一化,并与参考坐标系对齐,以进行旋转,平移和缩放不变分类。然后将预处理后的范围图像划分为16x16子块,对每个子块进行平滑处理以最小化局部变化。将2DPCA应用于结果范围数据,并将相应的主矢量用作对象的特征,以确定其在预先记录的形状数据库中的身份。针对具有任意变形的几个3D面部图像对系统的性能进行了测试。实验在优化构造的本征人脸特征空间中使用最小欧氏距离分类策略,对GavaDB 3D人脸数据库条目及其高斯或泊松型噪声版本的识别精度达到92%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号