首页> 外文会议>Theory and Applications of Models of Computation >A Moderately Exponential Time Algorithm for Full Degree Spanning Tree
【24h】

A Moderately Exponential Time Algorithm for Full Degree Spanning Tree

机译:全度生成树的中指数时间算法

获取原文
获取原文并翻译 | 示例

摘要

We consider the well studied Full Degree Spanning Tree problem, a NP-complete variant of the Spanning Tree problem, in the realm of moderately exponential time exact algorithms. In this problem, given a graph G, the objective is to find a spanning tree T of G which maximizes the number of vertices that have the same degree in T as in G. This problem is motivated by its application in fluid networks and is basically a graph-theoretic abstraction of the problem of placing flow meters in fluid networks. We give an exact algorithm for Full Degree Spanning Tree running in time O(1.9172~n). This adds Full Degree Spanning Tree to a very small list of "non-local problems", like Feedback Vertex Set and Connected Dominating Set, for which non-trivial (non brute force enumeration) exact algorithms are known.
机译:在中等指数时间精确算法领域,我们考虑了经过充分研究的全度生成树问题,它是生成树问题的NP完全变体。在此问题中,给定图形G,目标是找到G的生成树T,该生成树T在T中的度数与G中的度数相同。流量计在流体网络中放置问题的图形理论抽象。我们给出了在时间O(1.9172〜n)内运行的全度生成树的精确算法。这将“全度生成树”添加到很小的“非局部问题”列表中,例如“反馈顶点集”和“连接支配集”,其已知的是非平凡(非蛮力枚举)精确算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号