首页> 外文会议>Theory and Applications of Models of Computation >The Non-isolating Degrees Are Upwards Dense in the Computably Enumerable Degrees
【24h】

The Non-isolating Degrees Are Upwards Dense in the Computably Enumerable Degrees

机译:非隔离度在可计算度数中向上密集

获取原文
获取原文并翻译 | 示例

摘要

The existence of isolated degrees was proved by Cooper and Yi in 1995 in [7], where a d.c.e. degree d is isolated by a c.e. degree a if a < d is the greatest c.e. degree below d. A computably enumerable degree c is non-isolating if no d.c.e. degree above c is isolated by c. Obviously, 0 is a non-isolating degree. Cooper and Yi asked in [7] whether there is a nonzero non-isolating degree. Ar-slanov et al. showed in [3] that nonzero non-isolating degrees exist and that these degrees are downwards dense in the c.e. degrees and can also occur in every jump class. In [11], Salts proved that there is an interval of computably enumerable degrees, each of which isolates a d.c.e. degree. Recently, Cenzer et al. [4] proved that such intervals are dense in the computably enumerable degrees, and hence the non-isolating degrees are nowhere dense in the computably enumerable degrees. In this paper, using a different type of construction to that of [3], we prove that the non-isolating degrees are upwards dense in the computably enumerable degrees. In the context of [4], this is the best possible such result.
机译:Cooper和Yi在1995年[7]中证明了孤立度的存在。度d由c.e隔离。如果a <d为最大c,则为a。低于d的学位。如果没有d.c.e,则可计算的度数c是非孤立的。 c以上的度数由c隔离。显然,0是非隔离度。 Cooper和Yi在[7]中询问是否存在非零非孤立度。 Ar-slanov等。在[3]中表明,存在非零非孤立度,并且这些度在c.e中向下密集。度,也可能出现在每个跳级中。在[11]中,Salts证明存在一个可计算的度数间隔,每个间隔都隔离一个d.c.e。学位。最近,Cenzer等。文献[4]证明了这种间隔在可计算的可数范围内是密集的,因此非隔离度在可计算的可数范围内都不是密集的。在本文中,使用与[3]不同的构造类型,我们证明了非隔离度在可计算的程度内向上密集。在[4]的背景下,这是最好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号