【24h】

Lung Segmentation for Chest Radiograph by Using Adaptive Active Shape Models

机译:基于自适应主动形状模型的胸片肺分割

获取原文

摘要

In this paper, we proposed an automatic lung segmentation method. We designed a ROI based method to estimate a proper initial lung boundary for ASM deformation by deriving the translation and the scaling parameters from the lung ROI. An adaptive ASM, using k-means clustering and silhouette-based cluster validation technique, was proposed to adapt to the lung shape change so that the lung shape variation among people can be overwhelmed. The experiments indicated that the segmentation performance of the adaptive ASM is superior to the traditional ASM approaches.
机译:在本文中,我们提出了一种自动肺分割方法。我们设计了一种基于ROI的方法,通过从肺ROI推导出平移和缩放参数来估计ASM变形的正确初始肺边界。提出了一种自适应的ASM,它使用k-means聚类和基于轮廓的聚类验证技术来适应肺的形状变化,从而使人之间的肺形状变化不堪重负。实验表明,自适应ASM的分割性能优于传统的ASM方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号