【24h】

Related Queries Recommendation Based on User Logs for Chinese Search Engines

机译:基于用户日志的中文搜索引擎相关查询推荐

获取原文

摘要

This paper presents an effective method to suggest a list of semantically related queries to a given query submitted to a search engine. The related queries are based on previous queries in the user logs, and can be issued by the user to rephrase the search process. The method proposed is based on a query clustering process in which groups of semantically similar queries are identified. An efficient clustering algorithm called suffix tree clustering is developed in the study. Meanwhile, the keywordbased similarity measure is used for determining the closest cluster to the given query, and the Chinese synonymy is also considered in the measure to increase the veracity. To evaluate the proposed method, a series of experiments are carried out by using one month user logs from Chinese search engine Sogou. The performed experiments verify the effectiveness and efficiency of the method for query recommendation.
机译:本文提出了一种有效的方法,可向提交给搜索引擎的给定查询建议与语义相关的查询的列表。相关查询基于用户日志中的先前查询,并且可以由用户发出以重新定义搜索过程。所提出的方法基于查询聚类过程,其中识别出语义相似的查询组。研究中开发了一种有效的聚类算法,称为后缀树聚类。同时,基于关键词的相似性度量用于确定最接近给定查询的聚类,并且在度量中还考虑了中文同义以提高准确性。为了评估所提出的方法,使用来自中国搜索引擎搜狗的一个月用户日志进行了一系列实验。所进行的实验验证了查询推荐方法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号