【24h】

Copula Quantile Regression and Measurement of Risk in Finance

机译:Copula分位数回归和金融风险度量

获取原文

摘要

Quantile regression is a basic tool for estimating conditional quantiles of a response variable Y given a vector of regressors X. It can be used to measure the effect of regressors not only in the center of a distribution, but also in the upper and lower tails. In this paper we use the Archimedean Copula nonlinear conditional quantile regression model to measure the tail area risk dependence in Shanghai and Shenzhen stock markets with 600 groups of data of daily closing prices from January 4, 2005 to August 21, 2007.And then the result of this method is compared with the tail dependence measure by extreme value method. The results derived from quantile regression method show that Shanghai and Shenzhen stock markets have different risk dependence under different quantiles. While extreme value theory method only focuses on the estimation of tail dependence and it also shows that Shanghai and Shenzhen stock markets have strong dependence in the lower tail.
机译:分位数回归是在给定回归向量X的情况下估算响应变量Y的条件分位数的基本工具。它不仅可以用于测量分布中心的回归器,而且可以用于测量上,下尾部的回归器效果。本文使用Archimedean Copula非线性条件分位数回归模型,通过2005年1月4日至2007年8月21日的600组每日收盘价数据,测量了上海和深圳股市尾部区域的风险依存关系。通过极值法将该方法的特征与尾部相关性度量进行比较。从分位数回归方法得出的结果表明,在不同分位数下,上海和深圳股市具有不同的风险依赖性。极值理论方法仅着重于对尾部依赖性的估计,它还表明,上海和深圳股市在下尾部具有较强的依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号