首页> 外文会议>TAPPI technology summit 2002 >PAPER WEB IMAGING WITH ADVANCED DEFECT CLASSIFICATION
【24h】

PAPER WEB IMAGING WITH ADVANCED DEFECT CLASSIFICATION

机译:进阶缺陷分类的纸幅影像

获取原文
获取原文并翻译 | 示例

摘要

Paper web inspection with defect detection and classification helps mills to reduce production disturbances, removerncauses of defects, and deliver products of correct quality to the customers. However, the capabilities of conventionalrninspection systems are limited. The actual severities of spots or holes cannot always be identified precisely enough.rnModern imaging systems open up new possibilities. They utilize CCD-camera technology to create electronic grayrnscale images of the paper. Therefore, the fine details of defects can be discerned, which makes it possible to classifyrnthe defects more precisely than before. This is accomplished by various digital image retrieving and analysisrntechniques. Neural networks can be used for classifying defects which the system has been trained to recognize. Forrnexample, differentiating slime holes from small wire holes at a re-reeler, helps to prevent paper breaks at an off-linerncoater. As a result these modern systems can help the papermaker to enhance mill productivity.
机译:具有缺陷检测和分类功能的纸幅检查有助于工厂减少生产干扰,消除缺陷原因,并向客户提供质量正确的产品。然而,常规检查系统的能力是有限的。斑点或孔洞的实际严重程度无法始终得到足够准确的识别。现代成像系统开辟了新的可能性。他们利用CCD相机技术创建纸张的电子灰度图像。因此,可以识别出缺陷的精细细节,这使得可以比以前更精确地对缺陷进行分类。这是通过各种数字图像检索和分析技术来完成的。神经网络可用于对已被训练识别的缺陷进行分类。例如,在重新收卷机上将粘液孔与小线孔区分开来,有助于防止离线涂布机上的纸张断裂。结果,这些现代系统可以帮助造纸厂提高纸厂的生产率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号