首页> 外文会议>Symposium on VLSI Technology >In-situ MOS gate engineering in a novel rapid thermal/plasma multiprocessing reactor
【24h】

In-situ MOS gate engineering in a novel rapid thermal/plasma multiprocessing reactor

机译:新型快速热/等离子体多处理反应器中的原位MOS栅极工程

获取原文

摘要

Low temperatures and short times are essential requirements of future VLSI processing and the use of plasma in conjunction with single-wafer lamp heating is a major step to realize this goal, In-situ multiprocessing reduces contamination and enhances yield. Reproducible growth of thin oxides in hot-wall furnaces is difficult due to long transient times and constant furnace temperatures. Since furnaces are not designed for single-wafer processing, no extensive in-situ real-time measurements can be performed. RTP of Si in O2 and NH3 ambients is an attractive technique for the growth of silicon nitride, silicon dioxide, nitrided oxides, oxidized nitrides, and application-specific insulators [1). We have also demonstrated the feasibility of low-temperature nitridation of Si in nitrogen plasma generated by microwave discharge [2]. LPCVD of tungsten (W) has emerged as a viable technology for VLSI. The convent ionalliot-wall furnaces are not suitable for reproducible high-rate W deposition and nonselective formation of W on insulators.
机译:低温和短时间是未来VLSI处理的基本要求,将等离子体与单晶片灯加热结合使用是实现此目标的重要步骤,原位多处理可减少污染并提高产量。由于较长的瞬态时间和恒定的炉温,在热壁炉中难以再现生长薄氧化物。由于熔炉不是为单晶圆处理而设计的,因此无法进行广泛的现场实时测量。在O2和NH3环境中,Si的RTP是一种吸引人的技术,可用于生长氮化硅,二氧化硅,氮化氧化物,氧化的氮化物和专用绝缘子[1]。我们还证明了微波放电在氮气等离子体中进行低温氮化硅的可行性[2]。钨(W)的LPCVD已成为VLSI的可行技术。传统的壁式炉不适用于可重复的高速率W沉积和在绝缘子上非选择性形成W的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号